ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

УТВЕРЖДАЮ

	Проректор по	УМР и К
		Бамбаева Н.Я
‹ ‹	»	2011 г.

РАБОЧАЯ ПРОГРАММА

по дисциплине \boldsymbol{b} \boldsymbol{b}	2.1МАТЕМАТИКА. М	<i>Іатематическі</i>	ий анализ				
	шифр и название дисципл	ины					
Направление подготовки	230100- Информатика и вычислительная						
	техника						
Квалификация (степень)	Бакалавр						
Профиль подготовки	Вычислительные машины, комплексы,						
	cucm	<i>иемы и сети.</i>					
Факультет		ФПМВТ					
Кафедра	Высше	й математики					
Курс обучения	Первый						
Форма обучения	Очная						
Общий объем учебных ча	сов на дисциплину	на дисциплину 216 час					
Семестр		1,2 сем.	_				
Объем аудиторной нагруз	КИ	72/36 час.					
Лекции		<u>36/18</u> час.					
Практические занятия		час.					
Лабораторные работы		 час.					
Курсовой проект		-					
Зачет		- сем.					
Экзамен		<u></u> сем.					
Объем самостоятельной р	аботы студента	72/36/ час.					

Рабочая программа составлена на основании Примерной учебной							
программы дисциплины Б2.1МАТЕМАТИКА. Математический Анализ							
и в соответствии с требованиями ФГОС ВПО, утвержденного приказом							
Министра образования и науки Российской Федерации от							
« 09 » 112009 г. № 553 по направлению подготовки							
230100 Информатика и вычислительная техника,							
квалификация (степень) - Бакалавр .							
Рецензент:							
Рабочую программу составили:							
Tuod lylo iipolpaining coclabilini.							
Доц., к. т. н ., ст. н. с. Бондарчук П Н							
(должность, степень, звание) Подпись (Фамилия, инициалы)							
(40000000000000000000000000000000000000							
Рабочая программа утверждена на заседании кафедры:							
тиостил программи утверждени на заседини кафедры.							
Протокол № <u>10</u> от « <u>20</u> » <u>мая</u> 2011 г.							
Зав. кафедрой.							
Д. т. н., профессор Самохин А В							
(должность, степень, звание)							
(должность, степень, звание)							
Рабочая программа одобрена методическим советом специальности							
230101- Вычислительные машины, комплексы, системы и сети							
(шифр, наименование)							
Протокол № 6 от « <u>10</u> » июня 2011 г.							
Председатель							
методического совета,							
Д. т. н., профессор Соломенцев В В							
(должность, степень, звание) Подпись (Фамилия, инициалы)							
Рабочая программа согласована с Учебно-методическим управлением (УМУ)							
Начальник УМУ, к.э.н., доц. Борзова А.С.							
(должность, степень, звание) Подпись (Фамилия, инициалы)							

1. Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) Математика. Математический анализ -- являются формирование и развитие личности студентов, их способностей к алгоритмическому и логическому мышлению, а так же обучение основным математическим понятиям и методами Математики. Математического анализа.

Целью преподавания прикладных разделов дисциплины является то, что путем решения практически ориентированных задач в различных спецкурсах, возможно продемострировать студентам существенное преимущество математических методов.

Такой подход позволяет решить следующие задачи:

- раскрывается роль математических методов при решении инженерных задач
- происходит обучение применения математического анализа для построения математических моделей реальных процессов.

2.Место дисциплины в структуре ООП бакалавриата

Дисциплина Математика. Математический Анализ относится к учебным дисциплинам базовой

части профессионального цикла основной образовательной программы (ООП) направления подготовки 230100 — Информатика и вычислительная техника ,. квалификация (степень) — Бакалавр . Для успешного освоения дисциплины студент должен владеть знаниями умениями и навыками по школьной программе дисциплины Математика.

Приобретенные в результате обучения знания, умения и навыки используются во всех без исключения естественнонаучных и инженерных дисциплинах, модулях и практиках ООП.

- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) Б 2.1 МАТЕМАТИКА. Математический анализ Процесс изучения дисциплины направлен на формирование следующих компетенций у выпускника по специальности Информатика и вычислительная техника с квалификацией "Бакалавр":
 - А) общекультурных (ОК)
- * владеть культурой мышления, способен к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения ($O\ K-1$)
- * использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования в теоретических и экспериментальных исследованиях (ОК 10).
- Б) профессиональных (ПК)
- \ast обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности (Π K 6)

* готовить презентации, научно-технические отчеты по результатам выполненной работы, оформлять результаты исследований в виде статей и докладов на научно-технических конференциях (П К – 7)

В результате освоения дисциплины обучающийся должен:

- Знать:
 - дифференциальное и интегральное исчисление
- Уметь:
 - применять математические методы, физические законы и вычислительную технику для решения практических задач

6

зачетных единиц, 216 часов.

- Владеть:
 - элементами функционального анализа

4. Структура и содержание дисциплины (модуля) Математический анализ Общая трудоемкость дисциплины составляет

C He Формы e Виды учебной де текущего M No работы, контроля ЛЯ e п/п включая успеваемос c ce самостоятельн ти *(по* T Раздел p ую работу неделям ме Дисциплины студентов семестра) СТ трудоемкость Форма pa (в часах) промежуто чной аттестации Л ПР СРС (no семестрам) РАЗДЕЛ 1 1-4 1 8 8 8 Экзамен, Пределы и непрерывность. блок1 2 2 1.1 Введение в математику. Множества 1 1 2. экзамен, Понятие числа и арифметические операции блок1 1.2 Предел числовой последовательности и предел функции. Замечательные пределы. 1 2 2 2 2 экзамен, Свойства пределов .Неопределенности блок1 1 3 1.3 Непрерывность элементарных функций и 2 2 2 экзамен, их графики. Свойства непрерывных функций. блок1 1.4 Точки разрыва . Асимптоты. 1 4 2 2 2 блок1 Эквивалентные функции

2	варпеп 2	ĺ	Í		I	I	1
	РАЗДЕЛ 2	1	5-9	10	10	10	Greenway
	Производные и их приложения	1	3-9	10	10	10	Экзамен, Блок1
	2.1 Определение производной. Дифференциал	1	_	2	_	2	
	функции. Правила расчета производных	1	5	2	2	2	Экзамен,
	2.2 Неопределенности, их раскрытие по	1		2	_		блок1
	правилу Лопиталя . Дифференциалы и	1	6	2	2	2	экзамен,
	производные высших порядков. Формулы						блок1
	Тейлора и Маклорена		_				
	2.3 Исследование поведения функций. Экстре-	1	7	2	2	2	экзамен,
	мум функции и ее характерные точки.						блок1
	2.4 Выпуклость, вогнутость, точки перегиба.	1	8	2	2	2	
	Интервалы монотонности. Нули функции						
	2.5 Схема эскизного построения графиков по	1	9	2	2	2	Блок1
	характерным и критическим точкам .Примеры						
3	РАЗДЕЛ 3						
	Интегральное исчисление и его приложения	1	10-	18	18	18	Экзамен,
	3.1 Первообразная Неопределенный интеграл,		18				Блок2
	Свойства. Основные методы интегрирования.	1	10	2	2	2	Экзамен,
	3.2 Многочлены и их свойства. Разложение	1		2	2	2	блок2
	дробей на простые и их интегрирование.		11				блок2
	3.3 Интегрирование иррациональных и	1		2	2	2	экзамен,
	трансцендентных функций		12				блок2
	3.4 Интегрирование тригонометрических	1		2	2	2	экзамен,
	функций						блок2
	3.5 Определенный интеграл и его свойства.		13				
	Формула Ньютона-Лейбница	1		2	2	2	экзамен,
	3.6 Приближенное вычисление определенных		14				блок2
	интегралов	1	15	2	2	2	блок2
	3.7 Приложения определенных интегралов.	1	16	2	2		блок2
	3.8 Несобственные интегралы и их свойства	1	17	2	2	2 2	блок2
	3.9 Несобственные интегралы от	1	18	2	2	2	экзамен,
	неограниченных функций		10	_	_	_	блок2
	Подготовка к экзамену					36	ЭКЗАМЕН
	ИТОГО по 1 семестру			36	36	72	OKO/ HVILII
	РАЗДЕЛ 4	2	1-2	4	4	4	Экзамен,
4	Функции нескольких переменных	_	1 2	7	-	-	Блок3
-	4.1 Частные производные, дифференциал.	2	1	2	2	2	Экзамен,
	Производная по направлению. Градиент		1	2			блок3
	11роизводная по направлению . 1 радиент 4.2 Наибольшие и наименьшие значения.						OHOKS
		2	2	2	2	2	DAGOOM CAN
	Геометрический смысл. Безусловный и условный экстремумы функции 2 переменных	2		2			экзамен, блок3
							OJIOKS
	РАЗДЕЛ 5						
_	Кратные и криволинейные интегралы						
5	5.1 Двойные и тройные интегралы, их		3	2			
	свойства и вычисление . Приложение в	2	3	2	2	2	экзамен,
	практике. Криволинейные интегралы, их						блок3
	вычисление. Формула Грина	_	, _		_		
	РАЗДЕЛ 6	2	4-5	4	4	4	экзамен,
	Дифференциальные уравнения						Блок3
	6.1Уравнения 1 порядка, их классификация и						

6	виды решений . Линейные уравнения и методы их решений .	2	4	2	2	2	Экзамен, Блок4
	6.2 Уравнения высших порядков и общая	2	5	2	2	2	Экзамен, Блок4
	структура и вид решений. Системы уравнений РАЗДЕЛ 7	2	6-7	4	4	4	Экзамен,
	Числовые и функциональные ряды		_				Блок4
	7.1 Сходимость числовых и функциональных	2	6	2	2	2	Экзамен,
7	рядов. Признаки сходимости		7	2	_		Блок4
7	7.2 Степенные ряды и их практическое значение. Ряды Тейлора, Маклорена, Фурье.	2	/	2	2	2	Блок4
	ние : гяды Теилора, Маклорена , Фурье : РАЗДЕЛ 8						
	Функции комплексного переменного						Экзамен,
	8.1 Поле комплексных чисел.	2	8	2	2	2	Блок4
8	Дифференцирование и интегрирование	_		_		_	Direct :
	функций комплексного переменного. Вычеты						
9	РАЗДЕЛ 9						
	Операционное исчисление						
	9.1 Преобразование Лапласа. Оригиналы и						Экзамен,
	изображения . Решения задачи Коши.	2	9	2	2	2	Блок4
	Подготовка к экзамену					18	ЭКЗАМЕН
	ИТОГО за 2 семестр			18	18	36	
	И Т ОГ О по дисциплине			54	54	108	

Матрица соотнесения тем/разделов дисциплины формируемых в них профессиональных и общекультурных компетенций

	Коли			
Разделы дисциплины, темы (наименование)	чест	Комп	гетенц	ии
	60			
	часов	OK1	OK10	ПК6 ПК7 Сумма
Раздел 1 ПРЕДЕЛЫ и НЕПРЕРЫВНОСТЬ	24	+		1
1.1 Множества и арифметические операции	6	+		1
1.2 Пределы последовательностей и функций	6	+	+	2
1. 3 Непрерывность элементарных функций	6	+		1
1. 4 Точки разрыва. Асимптоты	6	+		1
Раздел 2 ПРОИЗВОДНЫЕ и ЕЁ ПРИЛОЖЕНИЯ	30	+	+	2
2. 1 Дифференцирование. Основные теоремы	6	+		1
2. 2 Дифференциал и производные высших порядков	6	+		1
2. 3 Экстремум функции. Основные этапы исследования функций	6	+		+ 2
2. 4 Выпуклость ,вогнутость. Характерные точки и интервалы	6	+	+	2
2.5 Построение графиков. Типовые примеры	6	+		+ 2
Раздел 3 ИНТЕГРАЛЫ и ИХ ПРИЛОЖЕНИЯ	54	+	+	2
3. 1 Первообразная и неопределенный интеграл	6	+		1
3. 2 Многочлен Разложение дробей на простые	6	+		1
3. 3 Интегрирование иррациональных и трансцендентных функций	6	+	_	1
3. 4 Интегрирование тригонометрических функций	6	+		1
3. 5 Определенный интеграл и его свойства	6	+	+	2
3. 6 Приближенное вычисление определенных интегралов	6	+		+ 2
3. 7 Приложение определенных интегралов	6	+		1

3. 8 Несобственные интегралы и их свойства	6	+		1
3. 9 Несобственные интегралы от неограниченных функций	6	+		1
ПОДГОТОВКА К ЭКЗАМЕНУ	36			
Раздел 4 ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ	1	+		+ 2
4. 1 Частные производные. Производная по направлению. Градиент	6	+	+	2
4. 2 Безусловный и условный экстремумы	6	+		+ 2
Раздел 5 КРАТНЫЕ и КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ	6	+		1
5.1 Двойные тройные и криволинейные интегралы и их свойства	6	+		1
Раздел 6 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ	12	+	+	2
6.1 Уравнения 1 порядка и методы решений	6	+		1
6.2 Уравнения высших порядков и общая структура их решения	6	+		1
Раздел 7 ЧИСЛОВЫЕ и ФУНКЦИОНАЛЬНЫЕ РЯДЫ	12	+		1
7.1 Сходимость рядов. Признаки сходимости	6	+		1
7.2 Степенные ряды и их приложения. Ряды Тейлора, Маклорена, Фурье	6	+		+ 2
Раздел 8 ФУНКЦИЯ КОМПЛЕКСНОГО ПЕРЕМЕННОГО	6	+		1
8.1 Комплексные числа. Дифференцирование, интегрирование. Вычеты	6	+		1
Раздел 9 ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ	6	+		1
9.1 Преобразования Лапласа. Решение задачи Коши	6	+		1
ПОДГОТОВКА К ЭКЗАМЕНУ	18			
Итого	216	•		

Содержание дисциплины

В первом семестре 18 лекций по 2 часа каждая

РАЗДЕЛ 1. Пределы и непрерывность (8час)

Лекция 1. 1 Введение в курс анализа. Понятие числа и арифметических операций.

Числовые множества и последовательности. Бесконечно малые и бесконечно большие последовательности. Их свойства [1, 3, 4]

Лекция 1.2 Предел числовой последовательности. Понятие функции. Предел функции. Свойства пределов функций. Бесконечно малые и бесконечно большие величины. [1, 3, 4]

Лекция 1.3 Непрерывность функции в точке. Точки непрерывности. Непрерывность элементарных функций. Эквивалентные функции [1, 3, 4]

Лекция 1.4 Точки разрыва и их свойства. Асимптоты [1, 3, 4]

РАЗДЕЛ 2 Производная и ее приложения (10час)

Лекция 2.1 Определение производной и дифференциала функции. Геометрический и физический смысл производной и дифференциала. Таблица производных и основные правила их вычисления. Производные обратной и сложной функций. [1, 3, 5]

Лекция 2.2 Неопределенности и их раскрытие по правилу Лопиталя. Дифференциалы и производные высших порядков. Формулы Тейлора и Маклорена. Примеры разложения по формулам. [1, 3, 5]

Лекция 2. 3 Исследование поведения функций . Экстремум функции и ее характерные точки. [1, 3, 5]

Лекция 2. 4 Выпуклость, вогнутость, точки перегиба. Интервалы монотонности. Нули функции .[1, 3, 4, 5]

Лекция 2.5 Наибольшее и наименьшее значения функции. Схема построения графиков. Типовые примеры построения функций. [3, 4, 5]

РАЗДЕЛ 3. Интегралы и их приложения (18час)

- Лекция 3.1 Первообразная и неопределенный интеграл. Таблица интегралов. Свойства.
- Геометрический смысл. Методы интегрирования (подстановкой, по частям).[1,3]
- Лекция 3.2Многочлены Интегралы рациональных дробей разложением на простые[5]
- Лекция 3.3 Интегрирование иррациональных и трансцендентных функций.[1,3]
- Лекция 3.4 Интегрирование тригонометрических функций.[1,3]
- Лекция 3.5 Определенный интеграл его геометрический и физический смысл Свойства
- Лекция 3.6 Приближенные методы расчета интегралов [1,3]
- Лекция 3.7 Приложение определенных интегралов в практике[1,]
- Лекция 3.8 Несобственные интегралы и их свойства [1,3]
- Лекция 3.9 Несобственные интегралы от неограниченных функций. Примеры[1,3] Во втором семестре 9 лекций по 2 часа каждая
- РАЗДЕЛ 4 Функции многих переменных (4час)
- Лекция 4.1 Частные производные. Дифференциал. Частные производные высших порядков. Дифференцирование сложных функций.[1,3]
- Лекция 4. 2 Касательная плоскость и нормаль к поверхности. Производная по направлению. Градиент . Экстремум функции двух переменных.[1,3, 5]
- РАЗДЕЛ 5 Кратные и криволинейные интегралы (2час)
- Лекция 5.1 Двойные и тройные интегралы в декартовых и полярных координатах. Криволинейные интегралы, их вычисление. Формула Грина .[2,5]
- РАЗДЕЛ 6 Обыкновенные дифференциальные уравнения (4час)
- Лекция 6.1 Уравнения 1 порядка, их классификация и методы решений. Задача Коши. Дифференциальные уравнения высших порядков, допускающих понижение порядка. Структура общего решения. [2, 5]
- Лекция 6.2 Однородные и неоднородные уравнения п-го порядка с постоянными коэффициентами и правой частью. Метод вариации произвольных постоянных. Решение систем линейных уравнений. [2, 5]
- РАЗДЕЛ 7 Числовые и функциональные ряды (4час)
- Лекция 7.1 Понятие о числовых и функциональных рядах. Признаки сходимости рядов. Знакопеременные ряды и их свойства. Равномерно сходящиеся ряды. Признак Вейеритрасса [2,3,4]
- Лекция 7.2 Степенные ряды и их свойства. Приложение их в практике вычислений Ряды Тейлора и Маклорена. Ряды Фурье и их применение [2, 3, 4]
- РАЗДЕЛ 8 Функции комплексного переменного (2час)
- Лекция 8.1 Поле комплексных чисел. Дифференцирование и интегрирование. Вычеты и их использование для вычисления интегралов [2, 3,4].
- РАЗДЕЛ 9 Операционное исчисление (2 час)
- Лекция 9.1 Преобразования Лапласа. Оригиналы и изображения и их таблицы.
- Решение задачи Коши для систем дифференциальных уравнений. [2, 3, 4]

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ и ИХ ОБЬЕМ В ЧАСАХ В первом семестре 18 практических занятий по 2 часа каждое

- 1. Вычисление пределов числовых последовательностей
- 2. Вычисление пределов функций. Раскрытие различных типов неопределенностей
- 3. Исследование функций на непрерывность. Нахождение точек разрыва и их типов
- 4. Вычисление производной сложной функции. Нахождение дифференциала функции
- 5. Дифференцирование функции. заданной в параметрическом виде и неявной функции
- 6. Вычисление производных и дифференциалов высших порядков
- 7. Разложение функции по Тейлору. Применение правила Лопиталя к пределам.
- 8. Исследование функций с помощью производных и эскизное построение графиков
- 9. Рубежный контроль 1 по темам" Пределы" и "Производная"

- 10 Вычисление неопределенных интегралов методами подведения под знак дифференциала, замены переменной и интегрированием по частям
- 11. Интегрирование рациональных функций
- 12. Интегрирование иррациональных функций
- 13. Интегрирование тригонометрических функций
- 14. Вычисление определенных интегралов
- 15. Приближенные вычисления определенных интегралов
- 16. Приложения определенных интегралов к практике вычислений
- 17. Вычисление несобственных интегралов
- 18. Рубежный контроль 2 по темам "Неопределенные, Определенные и Несобственные интегралы".

Во втором семестре 9 практических занятий по 2 часа каждое

- 1 Вычисление частных производных градиента и производной по направлению для функции 2-х переменных
- 2 Нахождение экстремумов функции 2-х переменных
- 3 Вычисление двойных тройных и криволинейных интегралов
- 4 Решение линейных дифференциальных уравнений 1 порядка
- 5 Решение однородных и неоднородных уравнений с постоянными коэффициентами 2 порядка
- 6 Рубежный контроль1 по теме "Дифференциальные уравнения"
- 7 Сходимость числовых и степенных рядов Разложение функции в степенной ряд
- 8 Приложение преобразований Лапласа
- 9 Рубежный контроль 2 по темам "Ряды", "Операционное исчисление"

5. Образовательные технологии

В процессе преподавания дисциплины Б 2.1- Математика. Математический Анализ используются как традиционные формы и методы обучения (лекции , практические (семинарские) занятия) , так и методы Компьютерной Математики при выполнении КДЗ с

использованием современных математических пакетов типа MATHCAD и MAPLE с целью самопроверки результатов, полученных в ручном режиме.

Применение каждой формы обучения предполагает применение новейших IT – технологий

Проведение аудиторных занятий (лекций и практических занятий) предполагает использование аудиовизуальных электронных и компьтерных средств мультимедиа, имеющихся в арсенале Университета .

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Каждый студент в течение 1 и 2 семестров выполняет по 3 КДЗ, содержание которых по индивидуальным вариантам представлены в методических пособиях, разработанных и апробированных в течение многих лет кафедрой Высшей Математики МГТУ ГА (см. раздел 7- источники [4, 5]).

Данные материалы размещены на сайте кафедры http://. VM.MSTUCA.RU CAMOCTOЯТЕЛЬНАЯ PAБОТА студентов по дисциплине

"Математика.МАТЕМАТИЧЕСКИЙ АНАЛИЗ" способствует более глубокому усвоению изучаемого предмета, формирует

Навыки исследовательской работы, направляет студента на использование полученных теоретических знаний в практике в следующих видах:

- Изучение лекционного материала
- Подготовка к практическим занятиям
- Выполнение индивидуальных КДЗ
- Подготовка к экзаменам.

ТЕМЫ К.Д.З. ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА И ДЛЯ ПОДТВЕРЖДЕНИЯ ПРИОБРЕТЕННЫХ ИМ КОМПЕТЕНЦИЙ

- 1) $K \not\square 3 \not №1$. Пределы и непрерывность. Производные функций OK1, OK10, $\Pi K6$
- 2)КДЗ№2 Интегралы. Функции нескольких переменных. Кратные и криволинейные интегралы ОК10. ПК6. ПК7
- 3) КДЗ№3 Дифференциальные уравнения Ряды Функция комплексного переменного Элементы операционного исчисления ОК10, ПК6, ПК7.

ВОПРОСЫ К БЛОКУ 1

Пределы и непрерывность.

Введение в математику. Множества

Понятие числа и арифметические операции

Предел числовой последовательности и предел функции. Замечательные пределы .

Свойства пределов .Неопределенности

Непрерывность элементарных функций и

их графики. Свойства непрерывных функций.

Точки разрыва . Асимптоты. Эквивалентные функции

Производные и их приложения

Определение производной. Дифференциал

функции. Правила расчета производных

Неопределенности, их раскрытие по правилу Лопиталя . Дифференциалы и производные высших порядков. Формулы Тейлора и Маклорена

Исследование поведения функций. Экстре-

мум функции и ее характерные точки. Выпуклость, вогнутость, точки перегиба.

Интервалы монотонности. Нули функции

Схема эскизного построения графиков по

характерным и критическим точкам .Примеры

ВОПРОСЫ К БЛОКУ 2

ИНТЕГРАЛЫ и ИХ ПРИЛОЖЕНИЯ

Первообразная и неопределенный интеграл

Многочлен Разложение дробей на простые

Интегрирование иррациональных и трансцендентных функций

Интегрирование тригонометрических функций

Определенный интеграл и его свойства

Приближенное вычисление определенных интегралов

Приложение определенных интегралов

Несобственные интегралы и их свойства

Несобственные интегралы от неограниченных функций

ВОПРОСЫ К БЛОКУ 3

Функции нескольких переменных

Частные производные, дифференциал.

Производная по направлению . Градиент

Наибольшие и наименьшие значения.

Геометрический смысл . Безусловный и условный экстремумы функции 2 переменных Кратные и криволинейные интегралы

Двойные и тройные интегралы, их свойства и вычисление. Приложение в практике. Криволинейные интегралы, их вычисление. Формула Грина

ВОПРОСЫ К БЛОКУ 4

Дифференциальные уравнения

Уравнения 1 порядка, их классификация и

виды решений. Линейные уравнения и методы их решений.

Уравнения высших порядков и общая

структура и вид решений. Системы уравнений

Числовые и функциональные ряды

Сходимость числовых и функциональных

рядов. Признаки сходимости

Степенные ряды и их практическое значе-

ние . Ряды Тейлора, Маклорена , Фурье .

Функции комплексного переменного

Поле комплексных чисел. Дифференцирование и интегрирование функций комплексного переменного. Вычеты

Операционное исчисление Преобразование Лапласа . Оригиналы и изображения . Решения задачи Коши.

ВОПРОСЫ К ПЕРВОМУ ЭКЗАМЕНУ

Пределы и непрерывность Введение в курс анализа. Понятие числа и арифметических операций. Числовые множества и последовательности. Бесконечно малые и бесконечно большие

последовательности. Их свойства [1, 3, 4] Предел числовой последовательности. Понятие функции. Предел функции. Свойства пределов функций. Бесконечно малые и бесконечно большие величины.[1, 3, 4]

Непрерывность функции в точке. Точки непрерывности. Непрерывность элементарных функций. Эквивалентные функции [1, 3, 4]

Точки разрыва и их свойства. Асимптоты [1, 3, 4] 2 Производная и ее приложения Определение производной и дифференциала функции. Геометрический и физический смысл производной и дифференциала. Таблица производных и основные правила их вычисления. Производные обратной и сложной функций. [1, 3, 5]

Неопределенности и их раскрытие по правилу Лопиталя. Дифференциалы и производные высших порядков. Формулы Тейлора и Маклорена. Примеры разложения по формулам. [1, 3, 5]

Исследование поведения функций . Экстремум функции и ее характерные точки. [1, 3, 5]

Выпуклость, вогнутость, точки перегиба. Интервалы монотонности.. Нули функции .[1, 3, 4, 5]

Наибольшее и наименьшее значения функции. Схема построения графиков.

Типовые примеры построения функций.[3, 4, 5]

. Интегралы и их приложения

Первообразная и неопределенный интеграл. Таблица интегралов. Свойства.

Геометрический смысл. Методы интегрирования (подстановкой, по частям).[1,3, 5]

Многочлены Интегралы рациональных дробей разложением на простые [5]

Интегрирование иррациональных и трансцендентных функций.[1,3, 5]

Интегрирование тригонометрических функций.[1,3,5]

Определенный интеграл его геометрический и физический смысл Свойства

Приближенные методы расчета интегралов [1,3, 5]

Приложение определенных интегралов в практике[1,3, 5]

Несобственные интегралы и их свойства [1,3, 5]

Несобственные интегралы от неограниченных функций.

ВОПРОСЫ КО ВТОРОМУ ЭКЗАМЕНУ

Функции многих переменных

Частные производные. Дифференциал. Частные производные высших

порядков. Дифференцирование сложных функций.[1,3,4]

Касательная плоскость и нормаль к поверхности. Производная по направлению.

Градиент . Экстремум функции двух переменных.[1,3, 5]

Кратные и криволинейные интегралы

Двойные и тройные интегралы в декартовых и полярных координатах.

Криволинейные интегралы, их вычисление. Формула Грина .[2,5]

Обыкновенные дифференциальные уравнения

Уравнения 1 порядка, их классификация и методы решений. Задача Коши.

Дифференциальные уравнения высших порядков, допускающих понижение порядка.

Структура общего решения. [2, 4]

Однородные и неоднородные уравнения п-го порядка с постоянными

коэффициентами и правой частью. Метод вариации произвольных постоянных.

Решение систем линейных уравнений.[2, 4]

Числовые и функциональные ряды

Понятие о числовых и функциональных рядах. Признаки сходимости рядов.

Знакопеременные ряды и их свойства. Равномерно сходящиеся ряды. Признак Вейеритрасса [2,3,4]

Степенные ряды и их свойства. Приложение их в практике вычислений

Ряды Тейлора и Маклорена. Ряды Фурье и их применение [2, 3, 5]

Функции комплексного переменного

Поле комплексных чисел. Дифференцирование и интегрирование. Вычеты и их использование для вычисления интегралов [2, 3, 5].

Операционное исчисление

Преобразования Лапласа. Оригиналы и изображения и их таблицы. Решение задачи Коши для систем дифференциальных уравнений. [2, 3, 5]

РАСПРЕДЕЛЕНИЕ ОЦЕНОК ПО РЕЗУЛЬТАТАМ ЭКЗАМЕНА

В соответствии с 5-ти бальной шкалой оценка "5" ставится за 5 правильных Ответов из 6(шести) в билете. Соответственно, оценка "4" — за 4 правильных Ответа.

Оценка "3" – за 3 правильных ответа и оценка "2" – за 2 и менее ответов.

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

- а) основная литература:
 - 1. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление М. Наука 2005
 - 2. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы Ряды . Функции комплексного переменного М . Наука 2005
 - 3. Шипачев В.С. Высшая математика М. Высшая школа. 2010 гг
- б) дополнительная литература:
 - 4. Козлова В С. Любимов В М. Обыкновенные дифференциальные уравнения - МГТУ ГА , 2005 , № 1382
 - 5. Любимов ВМ. Жукова Е А.Ухова В А. Шуринов Ю А. Математика. Ряды - МГТУ ГА . 2007
- в) программное обеспечение и Интернет-ресурсы Лицензированные ОС Windows 7, Internet Explorer
- 8. Материально-техническое обеспечение дисциплины (модуля)
- 8.1 Лекционные аудитории с компьютером и комнатной видеоустановкой.