ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГ ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ (МГТУ ГА)

Кафедра высшей математики

В. С. Козлова

ВЫСШАЯ МАТЕМАТИКА

ПОСОБИЕ

по изучению дисциплины, выполнению контрольных работ и варианты заданий

для студентов первого курса специальности техническая эксплуатация транспортного радиооборудования (шифр 162107; 25.05.03) заочного обучения

Москва – 2014

Рецензент: заведующий кафедрой, кандидат физико-математических наук, доцент Ю. И. Дементьев.

Высшая математика. Пособие по выполнению контрольных работ и варианты заданий для студентов 1 курса по направлению 162107; 25.05.03 заочного обучения.

Данное пособие издается в соответствии с рабочей учебной программой дисциплины "Высшая математика" для специальности техническая эксплуатация транспортного радиооборудования (шифр 162107).

Пособие охватывает разделы математики, изучаемые студентами в первом и во втором семестрах первого курса. В пособии содержатся учебный план дисциплины, варианты контрольных домашних заданий и образцы их выполнения.

Рассмотрено и одобрено на заседании кафедры высшей математики $25.03.2014~\Gamma$. и на заседании методического совета по специальности 162107, 25.05.03~ от 10.04.2014~ Γ .

Введение

В данном методическом пособии изложены цели и задачи дисциплины «Высшая математика», последовательность её изучения, основные требования к контрольным работам, список рекомендуемой литературы.

В методическом пособии приведены варианты контрольных работ, которые должен выполнить студент на первом курсе, образцы их выполнения и теоретические сведения к некоторым наиболее трудным заданиям.

В пособии содержатся разделы математики, изучаемые студентами специальности 162107; 25.05.03 в первом и во втором семестрах первого курса: линейная алгебра, векторы, аналитическая геометрия, введение в математический анализ, дифференциальное исчисление функций одной и нескольких переменных, неопределённый и определённый интегралы.

Учебный план дисциплины

Студенты заочного отделения изучают высшую математику на первом и втором курсах. Студенты специальности 162107; 25.05.03 после окончания первого семестра сдают зачет, а после окончания второго семестра сдают экзамен. По окончании второго курса студенты сдают экзамен.

Распределение часов по видам занятий и формы контроля

	Часы на дисциплину				
Период		самост.		практ.	Форма
обучения	общие	работа	лекции	занятия	контроля
Курс 1 Семестр 1	180	162	10	8	зачёт
Курс 1 Семестр 2	180	156	10	14	экзамен
Kypc 2	288	254	16	18	экзамен
Всего часов	648	572	36	40	

В период сессии студентам читаются обзорные лекции по наиболее важным и трудным разделам курса, проводятся практические занятия. Одно лекционное и практическое занятие длится 2 часа.

В течение первого курса студент должен выполнить 4 контрольные работы по высшей математике.

В первом семестре студенты изучают следующие разделы курса математики: линейная алгебра, векторы, аналитическая геометрия.

По этим темам студент выполняет контрольную работу № 1 и сдаёт зачёт.

Во втором семестре изучаются следующие разделы: введение в математический анализ, дифференциальное исчисление функций одной и нескольких переменных, неопределённый и определённый интегралы.

По этим темам студент выполняет контрольные работы № 2, № 3, № 4 и сдаёт экзамен.

Указания по выполнению контрольных работ

При выполнении контрольных работ необходимо строго придерживаться указанных ниже правил. Работы, выполненные без соблюдения этих правил, не зачитываются и возвращаются студенту для переработки.

1. Каждая контрольная работа должна быть выполнена в отдельной тетради в клетку чернилами синего или черного цветов. Необходимо оставлять поля шириной 4-5 см для замечаний рецензента.

- 2. В заголовке работы на обложке тетради должны быть ясно написаны фамилия, имя и отчество студента, его учебный номер (шифр), название дисциплины, номер контрольной работы. Здесь же следует указать название учебного заведения и дату отсылки работы в университет.
- 3. В работе необходимо решить все задания, указанные в контрольной работе. Тетради, содержащие не все задания контрольной работы, а также задания не своего варианта, не зачитываются.
- 4. Номера заданий, которые студент должен выполнить в контрольной работе, определяются по таблице вариантов (см. ниже). Номер варианта совпадает с последней цифрой учебного номера (шифра) студента, при этом цифра 0 соответствует варианту 10.

Номера заданий для выполнения контрольных работ в первом семестре

Вариант	Контрольная работа № 1					
1	1.1 2.1 3.1					
2	1.2 2.2 3.2					
3	1.3 2.3 3.3					
4	1.4 2.4 3.4					
5	1.5 2.5 3.5					
6	1.6 2.6 3.6					
7	1.7 2.7 3.7					
8	1.8 2.8 3.8					
9	1.9 2.9 3.9					
10	1.10 2.10 3.10					

Номера заданий для выполнения контрольных работ во втором семестре

Вариант	Контрольная работа	Контрольная работа	Контрольная работа
	№ 2	№ 3	№ 4
1	4.1 5.1 6.1 7.1	8.1 9.1 10.1	11.1 12.1 13.1
2	4.2 5.2 6.2 7.2	8.2 9.2 10.2	11.2 12.2 13.2
3	4.3 5.3 6.3 7.3	8.3 9.3 10.3	11.3 12.3 13.3
4	4.4 5.4 6.4 7.4	8.4 9.4 10.4	11.4 12.4 13.4
5	4.5 5.5 6.5 7.5	8.5 9.5 10.5	11.5 12.5 13.5
6	4.6 5.6 6.6 7.6	8.6 9.6 10.6	11.6 12.6 13.6
7	4.7 6.7 6.7 7.7	8.7 9.7 10.7	11.7 12.7 13.7

8	4.8 5.8 6.8 7.8	8.8 9.8 10.8	11.8 12.8 13.8
9	4.9 5.9 6.9 7.9	8.9 9.9 10.9	11.9 12.9 13.9
10	4.10 5.10 6.10 7.10	8.10 9.10 10.10	11.10 12.10 13.10

- 5. Прорецензированные контрольные работы вместе со всеми исправлениями и дополнениями, сделанными по требованию рецензента, следует сохранять. Без предъявления прорецензированных контрольных работ студент не допускается к собеседованию по контрольной работе, к сдаче зачёта или экзамена.
- 6. Решения заданий надо располагать в порядке возрастания их номеров.
- 7. Перед решением каждого задания необходимо написать её номер и полностью переписать условие. В случае, если несколько заданий, из которых студент выбирает задания своего варианта, имеют общую формулировку, следует, переписывая условие задания, заменить общие данные конкретными, взятыми из своего варианта.
- 8. Решения заданий следует излагать подробно и аккуратно, объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи.
- 9. После получения прорецензированной работы, как незачтённой, зачтённой, студент должен исправить все отмеченные рецензентом ошибки и недочёты и выполнить все рекомендации рецензента. Если рецензент предлагает внести в решения заданий те или иные исправления или дополнения и прислать их для повторной проверки, то это следует сделать в должна обязательно При высылаемых исправлениях короткий срок. находиться прорецензированная работа и рецензия на неё. Поэтому при выполнении контрольной работы рекомендуется оставлять в конце тетради всех дополнений исправлений чистых листов ДЛЯ И несколько соответствии с указаниями рецензента. Вносить исправления в сам текст работы после её рецензирования запрещается.

Задания контрольных работ

КОНТРОЛЬНАЯ РАБОТА № 1.

Матрицы. Определители. Системы уравнений. Векторы. Аналитическая геометрия.

ЗАДАНИЕ 1

Даны матрицы A, B, C, D.

Найти матрицы 2A-3B, A^2 , $A\cdot C$, $D\cdot C$.

1.1

$$A = \begin{pmatrix} 5 & 2 & 4 \\ 5 & 2 & 4 \\ -4 & 3 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & -7 & 1 \\ 5 & 3 & -1 \\ 3 & 2 & 4 \end{pmatrix}, C = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}, D = \begin{pmatrix} -2 & 1 & O1 \\ 1 & 1 & O \end{pmatrix}.$$

1.2

$$A = \begin{pmatrix} 2 & 3 & -4 \\ 3 & 2 & -4 \\ -1 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 1 & -7 \\ 2 & 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 4 & 6 \\ 1 & 2 & 0 \end{pmatrix}.$$

1.3

$$A = \begin{pmatrix} 2 & 1 & 5 \\ -4 & 3 & -4 \\ 1 & -1 & 4 \end{pmatrix}, B = \begin{pmatrix} 3 & -1 & 4 \\ -4 & -2 & 1 \\ 2 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, D = \begin{pmatrix} 2 & 4 & 9 \\ 1 & 0 & 1 \end{pmatrix}.$$

1.4

$$A = \begin{pmatrix} -2 & 1 & 2 \\ 1 & 3 & 1 \\ -7 & -4 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 2 \\ 0 & 1 & 3 \\ 4 & -7 & -4 \end{pmatrix}, C = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, D = \begin{pmatrix} 1 & -3 & 4 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$\begin{pmatrix}
2 & -4 & 3 \\
 & & & \\
 & & & \\
\end{pmatrix} \qquad
\begin{pmatrix}
1 & -4 & 2 \\
 & & & \\
\end{pmatrix} \qquad
\begin{pmatrix}
-2 \\
 & & \\
\end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -4 & 3 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 1 \\ 4 & -7 & 5 \end{pmatrix}, C = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, D = \begin{pmatrix} 7 & -1 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

1.6
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ -4 & 1 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 & 4 \\ 1 & 3 & -4 \\ 0 & 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix}, \quad D = \begin{pmatrix} 5 & 6 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$

1.7
$$A = \begin{pmatrix} -1 & 2 & -1 \\ 4 & 3 & 7 \\ 1 & 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & -4 \\ 3 & 1 & 1 \\ 1 & 3 & -7 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -1 & 1 & C \\ 8 & 1 & O \end{pmatrix}.$$

1.8
$$A = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 3 & 5 \\ 1 & 2 & 1 \end{pmatrix}.$$

1.9
$$A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ -4 & -7 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 & 4 \\ 1 & 2 & 3 \\ 1 & -4 & -7 \end{pmatrix}, \quad C = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 3 & 4 \\ 2 & 1 & 2 \end{pmatrix}.$$

1.10
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 4 \\ 2 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 3 & 2 \\ 2 & 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -3 & 5 \\ 1 & 1 & 2 \end{pmatrix}.$$

ЗАДАНИЕ 2

Дана система линейных уравнений.

Решить её двумя способами: 1) по правилу Крамера; 2) методом Гаусса.

$$\begin{cases}
2x+y+3z=1 \\
3x+2y+z=5 \\
x+y+z=3
\end{cases}$$

$$\begin{cases}
x+y-z=1 \\
8x+3y-6z=2 \\
4x+y-3z=3
\end{cases}$$

$$(x+y-z=0) \qquad (x+y-z=-2)$$

$$\begin{cases}
x+y-z=0 \\
3x+2y+z=5 \\
4x-y+5z=3
\end{cases}$$
2.4
$$\begin{cases}
x+y-z=-2 \\
4x-3y+z=1 \\
2x+y-z=1
\end{cases}$$

$$\begin{cases} x+2y+3z=5 \\ 2x-y-z=1 \\ x+3y+4z=6 \end{cases} 2.6 \begin{cases} x+2y-z=2 \\ 2x-3y+2z=2 \\ 3x+y+z=8 \end{cases}$$

$$\begin{cases}
x+2y+3z=1 \\
2x-3y+2z=9 \\
5x+8y-z=7
\end{cases}$$
2.8
$$\begin{cases}
2x+y-z=2 \\
3x+2y+2z=-2 \\
x+y-2z=1
\end{cases}$$

$$\begin{cases} x+2y+3z=1 & \begin{cases} x+y+2z=-1 \\ 5x-y-z=0 \end{cases} \\ 4x+3y+2z=1 \end{cases}$$
2.10
$$\begin{cases} x+y+2z=-1 \\ 2x-y+2z=-4 \\ 4x+y+4z=-2 \end{cases}$$

ЗАДАНИЕ 3

Даны координаты точек: A, B, C, D.

Найти:

- 1) длину вектора \overline{AB}
- 2) угол между векторами \overline{AB} и \overline{AD} .
- 3) уравнение прямой AB,
- 4) уравнение плоскости АВС,
- 5) площадь треугольника АВС
- 6) угол между ребром AD и гранью ABC,
- 7) объём пирамиды АВСО,

- 8) уравнение высоты, опущенной из вершины D на грань ABC,
- 9) длину высоты, опущенной из вершины D на грань ABC,

3.1
$$A(5, 1, 4)$$
; $B(-7, 6, 5)$; $C(3, -4, 3)$; $D(0, 2, 9)$.

3.2
$$A(5,2,0); B(2,5,0); C(1,2,4); D(-1,1,1).$$

3.3
$$A(-2, 0, -4); B(-1, 7, 1); C(4, -8, -4); D(1, -4, 6).$$

3.4
$$A(2,-1,2); B(1,2,-1); C(3,2,1); D(-4,2,5).$$

3.5
$$A(-1, 2, -3); B(4, -1, 0); C(2, 1, -2); D(3, 4, 5).$$

3.6
$$A(1,-1,1); B(-2,0,3); C(2,1,-1); D(2,-2,-4).$$

3.7
$$A(1,2,0); B(1,-1,2); C(0,1,-1); D(-3,0,1).$$

3.8
$$A(1,0,2); B(1,2,-1); C(2,-2,1); D(2,1,0).$$

3.9
$$A(1,3,0); B(4,-1,2); C(3,0,1); D(-4,3,5).$$

3.10
$$A(0,3,2)$$
; $B(-1,3,6)$; $C(-2,4,2)$; $D(0,5,4)$.

КОНТРОЛЬНАЯ РАБОТА № 2. Функция. Пределы. Производные. Дифференциалы.

ЗАДАНИЕ 4

Построить график данной функции преобразованием графика функции $y = \sin x$ или $y = \cos x$.

4.1
$$y = 2\sin(3x - \frac{3}{2});$$
 4.2 $y = -\sin(\frac{2}{3}x + 1);$ 4.3 $y = \frac{3}{2}\sin(3x + 6);$

4.4
$$y = 2\cos\left(\frac{3}{2}x - \frac{3}{4}\right)$$
; 4.5 $y = \frac{3}{2}\cos\left(\frac{1}{2}x + 1\right)$; 4.6 $y = -2\cos\left(3x - \frac{3}{2}\right)$;

4.7
$$y = 3\sin(2x+4);$$
 4.8 $y = -3\sin(\frac{1}{2}x-1);$ 4.9 $y = -2\cos(1-x);$

4.10
$$y = -3\cos(3x + 6)$$
.

ЗАДАНИЕ 5

Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а)-д). Найти предел функции по правилу Лопиталя в пункте е).

5.1 a)
$$\lim_{x \to \infty} \frac{x + 3x^2}{4 - 2x^2}$$
,

$$B) \quad \lim_{x\to 1}\frac{\sqrt{x}-1}{x^2-x},$$

$$\exists \lim_{x \to \infty} \left(\frac{2x+2}{2x+1} \right)^x,$$

6)
$$\lim_{x \to 1} \frac{x-1}{x^2 + 4x - 5}$$
,

$$\Gamma) \lim_{x\to 0} \frac{1-\cos 2x}{tg^2 6x},$$

e)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{\ln(1 + 2x)}$$
.

5.2 a)
$$\lim_{x \to \infty} \frac{1 - 6x + 7x^3}{3 - x^3}$$
,

B)
$$\lim_{x\to 5} \frac{x^2 - 2x - 15}{\sqrt{x - 1} - 2}$$
,

$$\text{д) } \lim_{x \to \infty} \left(\frac{15x + 2}{15x - 3} \right)^{x - 3},$$

6)
$$\lim_{x\to 1} \frac{x^2-1}{2x^2-x-1}$$
,

$$\Gamma) \lim_{x \to 0} \frac{arctg \ 3x}{tg \ 8x},$$

e)
$$\lim_{x \to 0} \frac{e^{7x} - e^{5x}}{\sin 3x}$$
.

5.3 a)
$$\lim_{x\to\infty} \frac{6x^4 + 2x^2 - 3}{1 - 2x^4}$$
,

B)
$$\lim_{x\to 3} \frac{\sqrt{2x+3}-3}{3+2x-x^2}$$
,

6)
$$\lim_{x\to 1} \frac{x^3 + 2x^2 - x - 2}{2x^2 - x - 1}$$
,

$$\Gamma) \lim_{x\to 0} \frac{1-\cos 4x}{x\sin 5x},$$

e)
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{\cos 3x - e^{-x}}$$
.

5.4 a)
$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 + 4x}{1 + 15x - x^3}$$
,

6)
$$\lim_{x \to -2} \frac{x^2 - 4}{x^3 + 2x^2 - x - 2}$$
,

B)
$$\lim_{x \to 1} \frac{\sqrt{x} - \sqrt{2 - x}}{x^2 + 5x - 6}$$
,

$$\Gamma) \lim_{x\to 0} ctg \, \frac{x}{5} \cdot tg \, 3x \,,$$

$$A) \lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}},$$

e)
$$\lim_{x \to +\infty} \frac{\ln(7+x)}{\sqrt[7]{x-3}}.$$

5.5 a)
$$\lim_{x \to \infty} \frac{5x^2 + 4x + 1}{3 + x - 2x^2}$$
,

6)
$$\lim_{x \to 5} \frac{x^2 - 25}{x^2 - 4x - 5}$$
,

B)
$$\lim_{x \to -1} \frac{\sqrt{x+2} + x}{x^2 - 1}$$
,

$$\Gamma) \lim_{x\to 0} \frac{\sin 3x \cdot tg \, 2x}{x \cdot \sin 4x},$$

$$\pi$$
 $\lim_{x\to 0} \frac{\ln(x+3) - \ln 3}{x}$,

e)
$$\lim_{x\to 0} \frac{5^{7x}-1}{3^{5x}-1}$$
.

5.6 a)
$$\lim_{x \to \infty} \frac{7x^4 - 3x^3 + 2x^2}{5 - 2x^4}$$
,

6)
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$
,

B)
$$\lim_{x\to 2} \frac{\sqrt{4x+1}-3}{x^2+x-6}$$
,

$$\Gamma$$
) $\lim_{x\to 0} \frac{x\cdot\sin x}{\cos 6x-1}$,

$$\lim_{x \to +\infty} (x+1) \cdot (\ln(2x+5) - \ln 2x)$$

e)
$$\lim_{x\to 0} \frac{\arcsin 4x}{5-5e^{-3x}}.$$

5.7 a)
$$\lim_{x \to \infty} \frac{1 + 2x + 3x^2}{5 - 6x - 2x^2}$$
,

6)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}$$
,

B)
$$\lim_{x\to 8} \frac{\sqrt{2x+9}-5}{x^2-6x-16}$$
,

$$\Gamma) \lim_{x\to 0} \frac{3x^2 - 5x}{tg \, 3x},$$

д)
$$\lim_{x \to \infty} x^2 \cdot (\ln(3x^2 - 1) - \ln(3x^2))$$
,

e)
$$\lim_{x \to -1} \frac{\sqrt[3]{1+2x}+1}{\sqrt{2+x}+x}$$
.

5.8 a)
$$\lim_{x \to \infty} \frac{2x^5 + 3x^3 + x}{1 + x^2 - 3x^5}$$
,

$$\text{6) } \lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2},$$

B)
$$\lim_{x \to \frac{1}{2}} \frac{2x^2 + 3x - 2}{\sqrt{0,5 + x} - \sqrt{2}x}$$
,

$$\Gamma) \lim_{x\to 0} \frac{\sin 7x - \sin 2x}{\sin x},$$

д)
$$\lim_{x\to 0} \frac{\ln(1+7x^2)}{3x^2}$$
,

e)
$$\lim_{x\to 0} \frac{e^{2x}-1}{\sin 3x}.$$

5.9 a)
$$\lim_{x \to \infty} \frac{x - 3x^2 + 2x^3}{5x^3 - 6x^2 + 3x + 2}$$
,

6)
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}$$
,

B)
$$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{x^2-3x-4}$$
,

$$\Gamma) \lim_{x \to 0} \frac{x^2 \cdot ctg \, 2x}{tg \, 5x},$$

$$A) \lim_{x \to 3} (2x - 5)^{\frac{x}{x^2 - 9}},$$

e)
$$\lim_{x \to +\infty} \frac{e^{2x}}{x^5}$$

5.10 a)
$$\lim_{x \to \infty} \frac{2x^4 + 3x^2 + 4}{6x^4 - x^3 + x^2}$$
,

6)
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1}$$
,

B)
$$\lim_{x \to -1} \frac{\sqrt{4 + x + x^2} - 2}{x + 1}$$
,

$$\Gamma) \lim_{x \to 0} \frac{\cos x - \cos^3 x}{\sin^2 2x},$$

$$A) \lim_{x \to 2} (4x - 7)^{\frac{x+3}{x-2}},$$

e)
$$\lim_{x\to 0} \frac{\ln(\cos 7x)}{\ln(\cos 5x)}$$

ЗАДАНИЕ 6

Функция f(x) задается различными аналитическими выражениями для различных областей изменения аргумента в пункте а). Требуется в пунктах а) и б) найти точки разрыва и определить характер разрыва; сделать чертёж в пункте а).

6.1

$$f(x) = \begin{cases} -x - 1, & x \in (-\infty; -1) \\ x^2 - 1, & x \in (-1; 1) \\ x + 1, & x \in (1; +\infty) \end{cases} \qquad f(x) = \begin{cases} x + 1, & x \in (-\infty; 0) \\ (x + 1)^2, & x \in (0; 2] \\ -x + 4, & x \in (2; +\infty) \end{cases}$$

 $f(x) = 2^{\frac{1}{x-5}}$

6.3

a)

$$f(x) = \begin{cases} -x + 2, & x \in (-\infty; 0) \\ (x - 1)^3, & x \in (0; 1) \\ x + 1, & x \in (1; +\infty) \end{cases}$$

6) $f(x) = 3^{\frac{1}{x-2}}$

6.5

a)

$$f(x) = \begin{cases} 0, & x \in (-\infty; -1) \\ -x^2 + 1, & x \in (-1; 1) \\ x + 1, & x \in (1; +\infty) \end{cases}$$

6) $f(x) = 4^{\frac{1}{x-3}}$

6.7

$$f(x) = \begin{cases} -x - 1, & x \in (-\infty; -1) \\ e^x, & x \in (-1; 0) \\ x + 1, & x \in (0; +\infty) \end{cases}$$

6) $f(x) = 9^{\frac{2}{x+5}}$

a)
$$f(x) = \begin{cases} x + 1, & x \in (-\infty; 0) \\ (x + 1)^2, & x \in (0; 2] \end{cases}$$

 $f(x) = 4^{\frac{1}{3-x}}$

6.4

$$f(x) = \begin{cases} 2, & x \in \left(-\infty; -\frac{\pi}{2}\right) \\ \cos x, & x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \\ x - \frac{\pi}{2}, & x \in \left(\frac{\pi}{2}; +\infty\right) \end{cases}$$

6) $f(x) = 5^{\frac{1}{1-x}}$

$$f(x) = \begin{cases} x, & x \in (-\infty; -\pi) \\ \sin x, & x \in \left(-\pi; \frac{\pi}{2}\right) \\ 1, & x \in \left(\frac{\pi}{2}; +\infty\right) \end{cases}$$

6) $f(x) = 2^{\frac{1}{3+x}}$

$$f(x) = \begin{cases} x+1, & x \in (-\infty; 0) \\ (x+1)^2, & x \in (0; 2] \\ -x+4, & x \in (2; +\infty) \end{cases}$$

6) $f(x) = 7^{\frac{1}{7-x}}$

6.10 a)

a)

 $f(x) = \begin{cases} 2, & x \in (-\infty; -2) \\ \sqrt{4 - x^2}, & x \in (-2; 2) \\ x - 2, & x \in (2; +\infty) \end{cases} \qquad f(x) = \begin{cases} 0, & x \in (-\infty; -3) \\ -\sqrt{9 - x^2}, & x \in (-3; 3] \\ 1, & x \in (3; +\infty) \end{cases}$

$$f(x) = 8^{\frac{1}{x-8}}$$

 $f(x) = 6^{\frac{1}{4-x}}$

ЗАДАНИЕ 7

Найти производные $\frac{dy}{dx}$ функций a), б), в) и дифференциалы функций г) и д).

7.1 a)
$$y = \arccos x \cdot e^x$$
; 6) $y = \frac{1 - \cos x}{1 + 2^x}$; B) $y = \arcsin^3(-x)$;

$$y = e^{\frac{1}{\cos 3x}}$$
; д) $y = (\cot 94x)^x$.

7.2 a)
$$y = (lnx) \cdot \sqrt{x^5}$$
; 6) $y = \frac{x^3 - 3}{arct.gx}$; B) $y = \sqrt{ln(1 + x^2)}$;

$$\Gamma$$
) $y = arcsin\sqrt{7 - e^{x/2}}$; χ д) $y = (cos2x)^{sinx}$.

7.3 a)
$$y = arcsinx \cdot log_3 x$$
; 6) $y = \frac{sinx}{1 + cosx}$; B) $y = tg^2 \left(-\frac{1}{x}\right)$;

г)
$$y = e^{arccos7x}$$
 ; д) $y = (x^2 + 5)^x$.

7.4 a)
$$y = cosx \cdot \sqrt[7]{x^5}$$
; 6) $y = \frac{x - cosx}{x + e^x}$; B) $y = arctg^{\frac{1}{3}}(lnx)$;

г)
$$y = 5^{5-ln5x}$$
 ; д) $y = (tg4x)^{arcsinx}$.

7.5 a)
$$y = log_3 x \cdot x^7$$
; 6) $y = \frac{3^x}{1 + lnx}$; B) $y = sin^5 (1 - x)$;

г)
$$y = \sqrt{x + \sqrt[5]{x^4 + \sqrt[3]{x}}}$$
 ; д) $y = (1 - x^2)^{arcsinx}$.

7.6 a)
$$y = tgx \cdot 7^x$$
; 6) $y = \frac{2-3x}{\sqrt{x}+x^2}$; b) $y = \sqrt[3]{ctg\frac{1}{x}}$;

$$\Gamma$$
) $y = arccos\sqrt{3 - e^x}$; χ д) $y = (\ln x)^{ctg2x}$.

7.7 a)
$$y = (\sin x) \cdot \sqrt{x^7}$$
; 6) $y = \frac{x^3 + 4}{ctgx - x}$; B) $y = tg^2(\sqrt{x})$;

$$\Gamma$$
) $y = log_2 arcsin \frac{1}{x}$; $y = (cos 3x)^{2x+1}$.

7.8 a)
$$y = \arccos x \cdot \log_5 x$$
; 6) $y = \frac{e^x}{1+x^2}$; B) $y = \left(x^5 - 3x + \frac{1}{x}\right)^9$;

г)
$$y = 5^{x + arctg7x}$$
 ; д) $y = (x^3 + 6)^{sin2x}$.

7.9 a)
$$y = 3^x \cdot \sqrt[5]{x^{-1}}$$
; 6) $y = \frac{x^3 - 8x + 3}{\ln x}$; B) $y = \ln^{\frac{1}{3}}(\ln x)$;

г)
$$y = e^{arccos\frac{1}{x}}$$
; д) $y = (x^3 - 4x)^{sinx}$.

7.10 a)
$$y = log_3 x \cdot (x^3 + 7x^2)$$
; 6) $y = \frac{tgx - 2x}{x^2 + 5}$;

в)
$$y = \sin^9(tgx)$$
; г) $y = arctg\sqrt{8x-2}$; д) $y = (x^2-1)^x$.

КОНТРОЛЬНАЯ РАБОТА № 3. Частные производные. Приложения производных. Построение графиков функций.

ЗАДАНИЕ 8

8.1. Показать, что
$$(x - y) \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y}$$
, если $z = \cos y + (y - x) \sin y$.

8.2. Показать, что
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, если

$$u = \ln \left(x^2 + y^2 \right).$$

8.3. Показать, что
$$\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$
, если $z = \sin(x + ay)$.

8.4. Показать, что
$$x \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} = 0$$
, если

$$z = \frac{x}{y}.$$

8.5. Показать, что
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
, если

$$z = \ln(x^2 + y^2 + 2x + 1).$$

8.6. Показать, что
$$x^2 \frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + 2xyz = 0$$
, если $z = e^{xy}$.

8.7. Показать, что
$$y \frac{\partial^2 z}{\partial x \partial y} = (1 + y \ln x) \frac{\partial z}{\partial x}$$
, если

$$z = x^y$$
.

8.8. Показать, что
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, если

$$u = e^x \cdot (x \cos y - y \sin y).$$

8.9. Показать, что
$$(y-x)\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial x}$$
, если $z = \cos x - (y-x) \cdot \sin x$.

8.10. Показать, что
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
, если

$$z = \operatorname{arctg} \frac{y}{x}$$
.

ЗАДАНИЕ 9

Найти $\overline{\operatorname{grad} z}$ в точке A и производную в точке A по направлению вектора \overline{a} , если

9.1.
$$z = \operatorname{arctg} \frac{x}{y}$$
, $A(1;1)$, $\bar{a} = -4\bar{i} + 3\bar{j}$.

9.2.
$$z = \arcsin \frac{x}{x+y}$$
, $A(1;1)$, $\bar{a} = 4\bar{i} + 3\bar{j}$.

9.3.
$$z = \ln (8x^2 + 3y)$$
, $A(1;4)$, $\bar{a} = 2\bar{i} - \bar{j}$.

9.4.
$$z = 3x^2y^2 + 5y^2x$$
, $A(1;1)$, $\bar{a} = 2\bar{i} + \bar{j}$.

9.5.
$$z = 3x^4 + 2x^2y^3$$
, $A(-1;2)$, $\bar{a} = 4\bar{i} - 3\bar{j}$.

9.6.
$$z = \operatorname{arctg}(xy^2)$$
, $A(2;3)$, $\bar{a} = 4\bar{i} - 3\bar{j}$.

9.7.
$$z = \arcsin \frac{x^2}{v}$$
, $A(1;2)$, $\bar{a} = 5\bar{i} - 12\bar{j}$.

9.8.
$$z = \ln (5x^2 + 4y^2)$$
, $A(1;1)$, $\bar{a} = 2\bar{i} - \bar{j}$.

9.9.
$$z = 2x^2 + 3xy + y^2$$
, $A(2;1)$, $\bar{a} = 3\bar{i} - 4\bar{j}$.

9.10.
$$z = \ln(x^2 + 3y^2)$$
, $A(1;1)$, $\bar{a} = 3\bar{i} + 2\bar{j}$.

ЗАДАНИЕ 10

Провести полное исследование функций и построить их графики.

10.2. a)
$$y = \frac{2}{x^2 + 2x}$$
; 6) $y = (x-1) \cdot e^{3x+1}$.

10.3. a)
$$y = \frac{x^2 - 4x + 1}{x - 4}$$
; 6) $y = e^{4x - x^2}$.

10.7. a)
$$y = \frac{3x-2}{x^3}$$
; 6) $y = \frac{\ln(x+2)}{x+2}$.

10.8. a)
$$y = \frac{x^2 - 3x + 3}{x - 1}$$
; 6) $y = x^2 \cdot \ln x$.

10.10. a)
$$y = \frac{x}{x^2 + 2x - 3}$$
;

6)
$$y = \frac{x}{2} - \arctan x$$
.

КОНТРОЛЬНАЯ РАБОТА № 4

Неопределённый и определённый интегралы. Приложения неопределенных интегралов.

ЗАДАНИЕ 11

Вычислить неопределённые интегралы. В пунктах а) и б) результаты проверить дифференцированием.

11.1 a)
$$\int \frac{x^2 dx}{\sqrt{x^6 + 1}}$$
;

$$6) \int x \cdot \sin^2 x \, dx;$$

B)
$$\int \frac{5x-13}{x^2+2x-3} dx$$
; Γ) $\int \frac{1+tg^2x}{tg x-1} dx$.

$$\Gamma) \int \frac{1 + tg^2 x}{tg x - 1} dx$$

11.2 a)
$$\int \frac{1 + \sin 2x}{\sin^2 x} dx$$
; 6) $\int \frac{\ln x}{x^2} dx$;

$$\int \frac{\ln x}{x^2} dx;$$

B)
$$\int \frac{x+8}{x^2+x-2} dx$$
;

B)
$$\int \frac{x+8}{x^2+x-2} dx$$
; Γ) $\int \frac{dx}{\sqrt{(x-1)^3} + \sqrt{x-1}}$.

11.3 a)
$$\int \frac{\sqrt{x} + \ln x}{x} dx;$$

$$\int \arctan x \cdot dx;$$

B)
$$\int \frac{x-29}{x^2-2x-15} dx; \qquad \Gamma \int \sin^2 x \cdot \cos^3 x \cdot dx.$$

$$\Gamma) \int \sin^2 x \cdot \cos^3 x \cdot dx$$

11.4 a)
$$\int \frac{x^2 dx}{\sqrt[3]{1+x^3}}$$
;

$$6) \int x^2 \cdot e^{-x} dx;$$

B)
$$\int \frac{-x-18}{x^2+x-12} dx; \qquad \qquad \Gamma) \int \frac{\sin^3 x}{\cos^2 x} dx.$$

$$\Gamma \int \frac{\sin^3 x}{\cos^2 x} dx$$

11.5 a)
$$\int \frac{dx}{x \cdot \sqrt{1 - \ln^2 x}};$$

$$6) \int x \cdot \cos^2 x \cdot dx;$$

B)
$$\int \frac{-4x-13}{x^2-7x-8} dx$$
;

$$_{\Gamma}$$
) $\int tg^3 x \cdot dx$.

11.6 a)
$$\int \frac{dx}{\cos^2 x \cdot \sqrt{1 + \lg x}}$$
; 6) $\int x \cdot e^{x/2} \cdot dx$;

$$\int x \cdot e^{x/2} \cdot dx;$$

B)
$$\int \frac{2x+14}{x^2+2x-8} dx$$
;

$$\Gamma) \int \sin^2 x \cdot \cos^2 x \cdot dx.$$

11.7 a)
$$\int \frac{\cos x \cdot dx}{9 + \sin^2 x};$$

6)
$$\int (x+2) \cdot 3^x \cdot dx$$
;

$$\mathbf{B}) \int \frac{x+33}{x^2-6x-7} dx$$

B)
$$\int \frac{x+33}{x^2-6x-7} dx$$
; Γ) $\int \frac{dx}{\sqrt{(2x)^3}-\sqrt{2x}}$.

11.8 a)
$$\int \frac{1+\sqrt{\ln x}}{x} dx;$$

$$6) \int \frac{x \cdot \cos x}{\sin^3 x} dx;$$

B)
$$\int \frac{3x-2}{x^2+3x-40} dx; \qquad \qquad \Gamma) \int \cos^4 x \cdot dx.$$

$$_{\Gamma}$$
) $\int \cos^4 x \cdot dx$.

11.9 a)
$$\int \frac{(\arcsin x)^3 - 1}{\sqrt{1 - x^2}} dx$$
; 6) $\int \frac{(x+1) \cdot dx}{\cos^2 x}$;

$$6) \int \frac{(x+1) \cdot dx}{\cos^2 x};$$

B)
$$\int \frac{x+18}{x^2-4x-12} dx$$
; Γ) $\int \frac{\sqrt{x}}{x+2} dx$.

$$\Gamma) \int \frac{\sqrt{x}}{x+2} dx.$$

11.10 a)
$$\int \frac{\sin x - \cos x}{(\cos x + \sin x)^3} dx;$$
 6)
$$\int \frac{\ln x}{\sqrt{x}} dx;$$

$$\int \frac{\ln x}{\sqrt{x}} dx;$$

B)
$$\int \frac{x+50}{x^2+x-20} dx$$
; Γ) $\int \frac{x^3 dx}{\sqrt{x^2+1}}$.

$$\Gamma) \int \frac{x^3 dx}{\sqrt{x^2 + 1}}$$

ЗАДАНИЕ 12

Вычислить несобственный интеграл или доказать его расходимость.

12.1
$$\int_{-2}^{6} \frac{dx}{\sqrt[3]{x+2}}.$$

12.2
$$\int_{0}^{+\infty} \frac{x}{(x+1)^3} dx$$
.

$$12.3 \int_0^{+\infty} \frac{dx}{x^2 + 2x + 2}$$

$$12.4 \int_{1}^{2} \frac{x \, dx}{\sqrt{x^2 - 1}}.$$

12.5
$$\int_{2}^{+\infty} \frac{x \, dx}{\sqrt{(x^2 + 5)^3}}.$$

12.6
$$\int_{0}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx.$$

$$12.7 \int_{-1}^{1} \frac{dx}{(x-1)^2}.$$

12.8
$$\int_{0}^{+\infty} x \cdot e^{-x^2} dx$$
.

$$12.9 \int_{2}^{+\infty} \frac{\ln x}{x} dx.$$

12.10
$$\int_{1}^{e} \frac{dx}{x \ln^2 x}$$
.

ЗАДАНИЕ 13

- 13.1. Вычислить площадь фигуры, ограниченной параболой: $y = 2 x \sqrt[2]{y}$ и прямой: y = -x.
- 13.2. Вычислить площадь фигуры, ограниченной линиями: $y = x^2 + 1$, y = -x + 7, y = 0, x = 0.
- 13.3. Вычислить площадь фигуры, ограниченной линиями $y = x^2$, $y = 2 x^2$.
- 13.4. Вычислить площадь фигуры, ограниченной параболами $y = 4 x^2$, $y = x^2 2x$.

- 13.5. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной параболой $y = 2x x^2$ и прямой y = 0.
- 13.6. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями $y = \sin 2x$, y = 0, $\left(0 \le t \le \frac{\pi}{2}\right)$.
- 13.7. Вычислить площадь фигуры, ограниченной линиями:

$$yx = 4$$
, $y + x - 5 = 0$.

- 13.8. Вычислить длину дуги кривой $y = \ln(x^2 1)$, $(2 \le x \le 3)$.
- 13.9. Вычислить длину дуги кривой

$$y = \frac{2}{3}x^{3/2}$$
, $(0 \le x \le 3)$.

13.10. Вычислить площадь фигуры, ограниченной линиями:

$$y^2 = x + 1$$
, $y^2 = 7 - x$

ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №1 Матрицы. Определители. Системы уравнений. Векторы. Аналитическая геометрия.

ЗАДАНИЕ 1

Даны матрицы:

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 0 & 3 \\ -1 & 3 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}.$$

Найти: A^2 , $A^2 + 5B$, $A \cdot C$.

Теория к заданию 1. Матрицы.

Матрица — это прямоугольная таблица чисел, заключённая в круглые скобки. Основные операции с матрицами:

1) произведением числа k на матрицу A называется матрица, элементы которой получены из элементов матрицы A умножением их на число k;

- 2) суммой (разностью) матриц A и B называется матрица, каждый элемент которой равен сумме (разности) соответствующих элементов матриц A и B;
- 3) произведением матрицы A на матрицу B называется матрица, элемент которой, стоящий в i-ой строке и j-ом столбце, равен сумме произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B.

Решение:

$$A^{2} = A \cdot A = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 2 & 1 & 2 \\ 3$$

$$= \begin{pmatrix} 19 & 17 & 13 \\ 11 & 23 & 11 \\ 20 & 24 & 20 \end{pmatrix};$$

$$A^{2} + 5B = \begin{pmatrix} 19 & 17 & 13 \\ 11 & 23 & 11 \\ 20 & 24 & 20 \end{pmatrix} + 5 \begin{pmatrix} 1 & -2 & 0 \\ -1 & 0 & 3 \\ -1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 19 & 17 & 13 \\ 11 & 23 & 11 \\ 20 & 24 & 20 \end{pmatrix} + \begin{pmatrix} 5 & -10 & 0 \\ -5 & 0 & 15 \\ -5 & 15 & 5 \end{pmatrix} = \begin{pmatrix} 24 & 7 & 13 \\ 6 & 23 & 26 \\ 15 & 39 & 25 \end{pmatrix};$$

$$A \cdot C = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2 + 4 \cdot (-2) + 1 \cdot 3 \\ 3 \cdot 2 + 1 \cdot (-2) + 2 \cdot 3 \\ 1 \cdot 2 + 5 \cdot (-2) + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 10 \\ 1 \end{pmatrix}.$$

ЗАДАНИЕ 2

Дана система линейных уравнений:

$$\begin{cases} x_1 + 2x_2 - x_3 = 2\\ 2x_1 - 3x_2 + 2x_3 = 2\\ 3x_1 + x_2 + x_3 = 8 \end{cases}$$

Решить её двумя способами: 1) методом Крамера; 2) методом Гаусса.

Теория к заданию 2. Системы линейных уравнений.

1. Метод Крамера. Пусть для системы уравнений:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases} \tag{1}$$

определитель системы отличен от нуля, т. е.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0.$$

Тогда система имеет единственное решение, которое вычисляется по формулам Крамера:

$$x = \frac{\Delta_x}{\Delta}$$
; $y = \frac{\Delta_y}{\Delta}$; $z = \frac{\Delta_z}{\Delta}$,

где

$$\Delta_{x} = \begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}, \ \Delta_{y} = \begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}, \ \Delta_{x} = \begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}.$$

Определитель Δ вычисляется по следующему правилу:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33}.$$

$$a_{32} - a_{12} \cdot a_{21} \cdot a_{33}.$$

$$\Delta_x, \ \Delta_y, \ \Delta_z \ \ \text{вычисляются аналогичным образом.}$$

2. Метод Гаусса. Для решения системы уравнений (1) методом Гаусса, составляют расширенную матрицу коэффициентов

$$\bar{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix} b_1 b_2$$

С помощью элементарных преобразований расширенную матрицу коэффициентов системы уравнений приводят к треугольному виду:

$$\begin{pmatrix} \widetilde{a_{11}} & \widetilde{a_{12}} & \widetilde{a_{13}} & \widetilde{b_1} \\ 0 & \widetilde{a_{22}} & \widetilde{a_{23}} & \widetilde{b_2} \\ 0 & 0 & \widetilde{a_{33}} & \widetilde{b_2} \end{pmatrix}$$

Допустимые элементарные преобразования:

- 1) можно поменять любые две строки местами;
- 2) любую строку можно умножить (или разделить) на любое неравное нулю число;
- 3) к любой строке можно прибавить любую строку, умноженную на любое число;
- 4) можно поменять местами любые два столбца, кроме последнего, а затем перенумеровать переменные

По последней матрице составляют соответствующую ей систему уравнений:

$$\begin{cases} \widetilde{a_{11}}x + \widetilde{a_{12}}y + \widetilde{a_{13}}z = \widetilde{b_1} \\ \widetilde{a_{22}}y + \widetilde{a_{23}}z = \widetilde{b_2} \\ \widetilde{a_{33}}z = \widetilde{b_3} \end{cases}$$

и последовательно находят неизвестные z, y, x.

Решение:

1) Решение системы методом Крамера.

Найдем определитель системы Δ :

$$\Delta = \det A = \begin{vmatrix} 1 & 2 & -1 \\ 2 & -3 & 2 \\ 3 & 1 & 1 \end{vmatrix} = 1 \cdot (-3) \cdot 1 + 3 \cdot 2 \cdot 2 + 2 \cdot (-1) \cdot 1 - 3 \cdot (-3) \cdot (-1) - 1 \cdot 2 \cdot 1 - 1 \cdot 2 \cdot 2 = -8.$$

Аналогично вычисляются определители:

$$\Delta_{x} = \begin{vmatrix} 2 & 2 & -1 \\ 2 & -3 & 2 \\ 8 & 1 & 1 \end{vmatrix} = -8, \qquad \Delta_{y} = = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 2 & 2 \\ 3 & 8 & 1 \end{vmatrix} = -16,$$

$$\Delta_{z} = \begin{vmatrix} 1 & 2 & 2 \\ 2 & -3 & 2 \\ 3 & 1 & 8 \end{vmatrix} = -24.$$

А тогда
$$x = \frac{\Delta_x}{\Delta} = \frac{-8}{-8} = 1$$
; $y = \frac{\Delta_y}{\Delta} = \frac{-16}{-8} = 2$; $z = \frac{\Delta_z}{\Delta} = \frac{-24}{-8} = 3$.

Следовательно, x = 1, y = 2, z = 3.

2) Решение системы методом Гаусса.

Рассмотрим расширенную матрицу \bar{A} и осуществим преобразование со строками:

$$\bar{A} = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 2 & -3 & 2 & 2 \\ 3 & 1 & 1 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 & 2 \\ l_2 \sim \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 0 & -5 & 4 & 2 \end{pmatrix} \begin{pmatrix} l_1 & 2 & -1 & 2 \\ l_2 - 2 & l_1 & 2 & -7 & 4 \\ l_3 - 3 & l_1 & 0 & -5 & 4 & 2 \end{pmatrix} \begin{pmatrix} l_1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ l_3 & 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} l_1 & 2 & -1 & 2 \\ l_2 & 2 & 2 \\ l_3 & 2 & 2 \end{pmatrix} \begin{pmatrix} l_1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 0 & 0 & \frac{8}{7} & \frac{24}{7} \end{pmatrix} \begin{pmatrix} l_1 & 2 & -\frac{5}{7} l_2^* + l_3^* \end{pmatrix} = \tilde{A}.$$

Или более подробно. Ко второй строке расширенной матрицы \bar{A} прибавляем первую строку, умноженную на (-2):

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 3 & 1 & 1 & 2 \end{pmatrix} l_2 - 2 l_1.$$

К третьей строке прибавляем первую строку, умноженную на (-3):

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 0 & -5 & 4 & 2 \end{pmatrix} \begin{pmatrix} l_1 \\ l_2 - 2l_1 \\ l_3 - 3l_1 \end{pmatrix}$$

Обозначаем полученные строки: l_1^* , l_2^* , l_3^* , получим:

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 0 & -5 & 4 & 2 \end{pmatrix} \begin{pmatrix} l_1^* \\ l_2^* \\ l_3^* \end{pmatrix}$$

К третьей строке прибавляем вторую, умноженную на $\left(-\frac{5}{7}\right)$:

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -7 & 4 & -2 \\ 0 & 0 & \frac{8}{7} & \frac{24}{7} \end{pmatrix} - \frac{5}{7} l_2^* + l_3^*$$

Коэффициенты матрицы \tilde{A} являются коэффициентами системы уравнений:

$$\begin{cases} x + 2y - z = 2 \\ -7y + 4z = -2 \\ \frac{8}{7}z = \frac{24}{7} \end{cases}$$
 Получим последовательно: $z = 3$, $y = 2$, $x = 1$.

ЗАДАНИЕ 3.

Даны координаты точек: A, B, C, D:

$$A(1;3;0)$$
; $B(7;4;1)$; $C(2;9;6)$; $D(4;6;6)$.

Найти:

- 1) длину вектора \overline{AB}
- 2) угол между векторами \overline{AB} и \overline{AD} .
- 3) уравнение прямой AB,
- 4) уравнение плоскости ABC,
- 5) площадь треугольника АВС
- 6) угол между ребром AD и гранью ABC,
- 7) объём пирамиды АВСО,
- 8) уравнение высоты, опущенной из вершины D на грань ABC,
- 9) длину высоты, опущенной из вершины D на грань ABC ,

Теория к заданию 3. Векторная алгебра и аналитическая геометрия.

Для точек A и B с координатами $A = (A_x; A_y; A_z)$ и $B = (B_x; B_y; B_z)$ координаты вектора \overrightarrow{AB} вычисляются по формуле:

$$\overrightarrow{AB} = \{B_x - A_x; B_y - A_y; B_z - A_z\}. \tag{2}$$

Рассмотрим векторы \overrightarrow{a} и \overrightarrow{b} с координатами $\overrightarrow{a} = \{a_x; a_y; a_z\}$ и $\overrightarrow{b} = \{b_x; b_y; b_z\}$.

Длина вектора \overrightarrow{a} обозначается через $|\overrightarrow{a}|$ и вычисляется по формуле:

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$
 (3)

Скалярное произведение векторов \overrightarrow{a} и \overrightarrow{b} обозначается через $(\overrightarrow{a}, \overrightarrow{b})$, $\overrightarrow{a} \cdot \overrightarrow{b}$ или $\overrightarrow{a} \overrightarrow{b}$ и вычисляется по формуле:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z. \tag{4}$$

Векторное произведение векторов \overrightarrow{a} и \overrightarrow{b} обозначается через $\left[\overrightarrow{a},\overrightarrow{b}\right]$ или $\overrightarrow{a}\times\overrightarrow{b}$ и вычисляется по формуле:

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{J} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}, \tag{5}$$

где \vec{l} , \vec{j} , \vec{k} - единичные векторы, направленные по осям Ox, Oy, Oz соответственно. Косинус угла между векторами \vec{a} и \vec{b} вычисляется:

$$cos\left(\angle\left(\overrightarrow{a},\overrightarrow{b}\right)\right) = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|\cdot|\overrightarrow{b}|}.$$
(6)

Канонические уравнения прямой, проходящей через точки A и B с координатами $A = (A_x; A_y; A_z)$ и $B = (B_x; B_y; B_z)$, записывается в виде:

$$\frac{x - A_x}{a_x} = \frac{y - A_y}{a_y} = \frac{z - A_z}{a_z} \tag{7}$$

где вектор $\overrightarrow{a} = \{a_x; a_y; a_z\} = \overrightarrow{AB}$ - направляющий вектор прямой AB.

Уравнение плоскости, проходящей через точки A, B, C, записывается в виде:

 $\tilde{A}x + \tilde{B}y + \tilde{C}z + \tilde{D} = 0$, где числа \tilde{A} , \tilde{B} , \tilde{C} – координаты вектора $\bar{n} = [\overrightarrow{AB}, \overrightarrow{AC}]$, а число \tilde{D} находится подстановкой координат точки A в уравнение плоскости. Вектор $\bar{n} = [\overrightarrow{AB}, \overrightarrow{AC}] = \{\tilde{A}, \ \tilde{B}, \ \tilde{C}\}$ называется нормальным вектором плоскости.

Уравнение плоскости, проходящей через точки $A = (A_x; A_y; A_z)$, $B = (B_x; B_y; B_z)$, $C = (C_x; C_y; C_z)$, можно записать в виде:

$$\begin{vmatrix} x - A_x & y - A_y & z - A_z \\ B_x - A_x & B_y - A_y & B_z - A_z \\ C_x - A_x & C_y - A_y & C_z - A_z \end{vmatrix} = 0,$$
(8)

которое представляет собой условие компланарности трех векторов: \overrightarrow{AM} , \overrightarrow{AB} , \overrightarrow{AC} (равенство нулю их смешанного произведения), M(x,y,z).

Смешанное произведение векторов: $\overrightarrow{a} = \{a_x; a_y; a_z\}$, $\overrightarrow{b} = \{b_x; b_y; b_z\}$ и $\overrightarrow{c} = \{c_x; c_y; c_z\}$ обозначается $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{a} \cdot [\overrightarrow{b}, \overrightarrow{c}]$ и вычисляется:

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
 (9)

Решение:

1) Координаты векторов определяем согласно формуле (2): $\overrightarrow{AB} = \{6; 1; 1\}; \ \overrightarrow{AC} = \{1; 6; 6\}; \ \overrightarrow{AD} = \{3; 3; 6\}$

Длины векторов согласно (3): $|\overrightarrow{AB}| = \sqrt{6^2 + 1^2 + 1^2} = \sqrt{38}$; $|\overrightarrow{AD}| = \sqrt{3^2 + 3^2 + 6^2} = \sqrt{54}$.

2) Угол между векторами \overline{AB} и \overline{AD} определяем по формулам (4) и (6):

$$\cos\angle\left(\overline{AB}; \overline{AD}\right) = \frac{6 \cdot 3 + 1 \cdot 3 + 1 \cdot 6}{\sqrt{38} \cdot \sqrt{54}} = \frac{27}{6\sqrt{57}} = \frac{9}{2\sqrt{57}},$$

$$\angle\left(\overline{AB}; \overline{AD}\right) = \arccos\frac{9}{2\sqrt{57}}.$$

- 3) Уравнение прямой *AB* согласно (7): $\frac{x-1}{6} = \frac{y-3}{1} = \frac{z}{1}$.
- 4) Уравнение плоскости ABC находим по формуле (8): $\begin{vmatrix} x-1 & y-3 & z \\ 6 & 1 & 1 \\ 1 & 6 & 6 \end{vmatrix} = 0$.

Вычисляем определитель разложением по первой строке, получаем:

$$(x-1)(6-6) - (y-3)(6\cdot 6-1\cdot 1) + z(6\cdot 6-1\cdot 1) = 0 \Rightarrow -35(y-3) + 35z = 0 \Rightarrow y-z-3=0.$$

5) Площадь треугольника ABC равна $\frac{1}{2}|[\overrightarrow{AB},\overrightarrow{AC}]|$. По формуле (5):

$$[\overrightarrow{AB}, \overrightarrow{AC}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6 & 1 & 1 \\ 1 & 6 & 6 \end{vmatrix} = \vec{i} \cdot (6 - 6) - \vec{j} \cdot (6 \cdot 6 - 1) + \vec{k} \cdot (6 \cdot 6 - 1) = \{0: -35: 35\}.$$

По формуле (3): $|[\overrightarrow{AB}, \overrightarrow{AC}]| = \sqrt{0^2 + (-35)^2 + 35^2} = 35\sqrt{2}$. А тогда $s_{ABC} = \frac{35\sqrt{2}}{2}$.

6) Угол φ между ребром AD и гранью ABC (плоскостью ABC): $\varphi = 90^{\circ} - \alpha$, где α — угол между $\overrightarrow{AD} = \{3; 3; 6\}$ и вектором нормали $\overrightarrow{n} = \{0; 1; -1\}$ к плоскости ABC. Поскольку $cos\alpha = sin\varphi$, то по формулам (4), (6):

$$\sin \varphi = \left| \frac{3 \cdot 0 + 3 \cdot 1 + 6 \cdot (-1)}{\sqrt{3^2 + 3^2 + 6^2} \cdot \sqrt{0^2 + 1^2 + (-1)^2}} \right| = \frac{3}{\sqrt{54} \cdot \sqrt{2}} = \frac{3}{6\sqrt{3}} = \frac{1}{3\sqrt{3}},$$

$$\varphi = \arcsin\left(\frac{1}{3\sqrt{3}}\right).$$

7) Объем пирамиды равен одной шестой от модуля смешанного произведения векторов $\overrightarrow{AB} = \{6;1;1\}; \ \overrightarrow{AC} = \{1;6;6\}; \ \overrightarrow{AD} = \{3;3;6\}$. По формуле (9):

$$V = \frac{1}{6} \cdot \begin{vmatrix} 6 & 1 & 1 \\ 1 & 6 & 6 \\ 3 & 3 & 6 \end{vmatrix} =$$
 (Из 3-го столбца $= \frac{1}{6} \cdot \begin{vmatrix} 6 & 1 & 0 \\ 1 & 6 & 0 \\ 3 & 3 & 3 \end{vmatrix} = \frac{1}{6} \cdot 3 \cdot \begin{vmatrix} 6 & 1 \\ 1 & 6 \end{vmatrix} = \frac{35}{2}$.

8) Уравнение высоты, опущенной из вершины D на грань ABC. Направляющий вектор высоты – это нормальный вектор плоскости $ABC: \vec{n} = \{0; 1; -1\}.$

Каноническое уравнение высоты согласно (7): $\frac{x-4}{0} = \frac{y-6}{1} = \frac{z-6}{-1}$.

9) Длина H высоты пирамиды, опущенной из вершины D на грань ABC, равна расстоянию d от точки D(4;6;6) до плоскости ABC : y-z-3=0

$$d = \frac{\left| \tilde{A}x_0 + \tilde{B}y_0 + \tilde{C}z_0 + \tilde{D} \right|}{\sqrt{\tilde{A}^2 + \tilde{B}^2 + \tilde{C}^2}} = \frac{\left| 0 \cdot 4 + 1 \cdot 6 - 1 \cdot 6 - 3 \right|}{\sqrt{0^2 + 1 + (-1)^2}} = \frac{3}{\sqrt{2}} = H$$

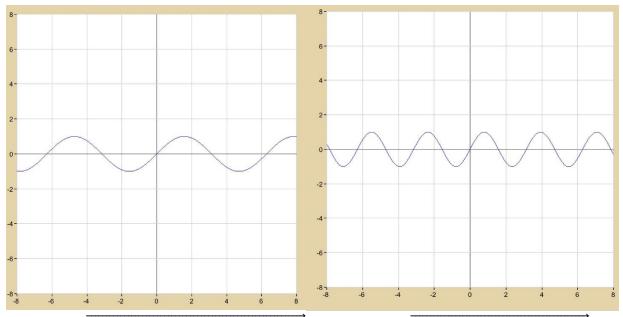
Кроме того, H можно найти из формулы $V_{DABC}=\frac{1}{3}S_{ABC}\cdot H$. Из п. 7) имеем: $V_{DABC}=V=\frac{35}{2}$; из п. 5): $S_{ABC}=\frac{35\sqrt{2}}{2}$, а тогда $H=\frac{3V}{S_{ABC}}=\frac{3\cdot\frac{35}{2}}{\frac{35\sqrt{2}}{2}}=\frac{3}{3}$

ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №2 Функция. Пределы. Производные. Дифференциалы.

ЗАДАНИЕ 4

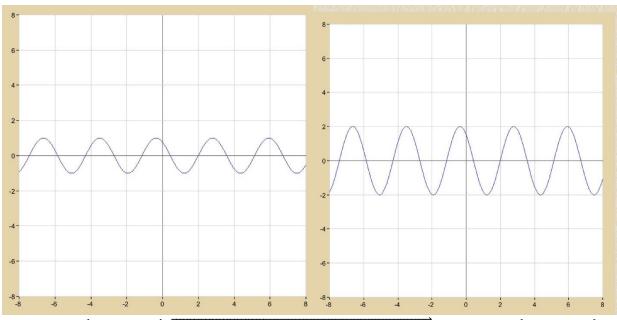
Построить график функции y = -2sin(2x-4) преобразованием графика функции y = sinx.

Решение.



y = sinx сжатие в 2 раза по оси \overrightarrow{Ox} y = sin2x смещение на 2 вправо по

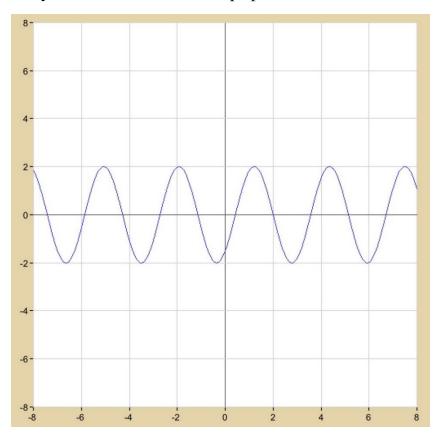
 $\overrightarrow{ocu} \overrightarrow{Ox}$



y = sin(2(x-2)) растяжение в 2 раза по оси \overrightarrow{Oy} y = 2sin(2(x-2))

 $\overrightarrow{\text{зеркальное отражение относительно оси } Ox$ y = -2sin(2(x-2))

Получаем окончательный график:



ЗАДАНИЕ 5

Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а)-д). Найти предел функции по правилу Лопиталя в пункте е).

a)
$$\lim_{x \to \infty} \frac{4x^3 - 3x^2 + x}{5x^3 + 4} = \lim_{x \to \infty} \frac{x^3 (4 - \frac{3}{x} + \frac{1}{x^2})}{x^3 (5 + \frac{4}{x^3})} = \frac{\lim_{x \to \infty} (4 - \frac{3}{x} + \frac{1}{x^2})}{\lim_{x \to \infty} (5 + \frac{4}{x^3})} = \frac{4}{5}.$$

6)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20} = \lim_{x \to 2} \frac{(x - 2)(x - 3)}{(x - 2)(x - 10)} = \lim_{x \to 2} \frac{x - 3}{x - 10} = \frac{\lim_{x \to 2} x - 3}{\lim_{x \to 2} x - 10} = \frac{-1}{-8} = \frac{1}{8}.$$

B)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}} = \lim_{x \to 4} \frac{(\sqrt{2x+1}-3)(\sqrt{2x+1}+3)(\sqrt{x-2}+\sqrt{2})}{(\sqrt{x-2}-\sqrt{2})(\sqrt{x-2}+\sqrt{2})(\sqrt{2x+1}+3)} =$$

$$= \lim_{x \to 4} \frac{(2x+1-9)(\sqrt{x-2}+\sqrt{2})}{(\sqrt{2x+1}+3)(x-2-2)} = \lim_{x \to 4} \frac{2(x-4)(\sqrt{x-2}+\sqrt{2})}{(\sqrt{2x+1}+3)(x-4)} = 2 \frac{\lim_{x \to 4} (\sqrt{x-2}+\sqrt{2})}{\lim_{x \to 4} (\sqrt{2x+1}+3)} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}.$$

$$\Gamma) \lim_{x \to 0} \frac{\sin^{2}\left(\frac{x}{3}\right)}{x^{2}} = \lim_{x \to 0} \frac{\sin^{2}\left(\frac{x}{3}\right)}{9 \cdot \left(\frac{x}{3}\right)^{2}} = \frac{1}{9} \lim_{x \to 0} \left(\frac{\sin\frac{x}{3}}{\frac{x}{3}}\right)^{2} = \frac{1}{9}.$$

$$\prod_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1} = \lim_{x \to \infty} \left(\frac{2x+1+2}{2x+1} \right)^{x+1} = \lim_{x \to \infty} \left[\left(1 + \frac{2}{2x+1} \right)^{\frac{2x+1}{2}} \right]^{\frac{2(x+1)}{2x+1}} = \lim_{x \to \infty} \left[\left(1 + \frac{2}{2x+1} \right)^{\frac{2x+1}{2}} \right]^{\frac{2(x+1)}{2x+1}} = e^1 = e^1.$$

Здесь используется второй замечательный предел.

e)
$$\lim_{x \to 0} \frac{e^{7x} - 1 - x^2}{\ln(1 + 5x)} = \lim_{x \to 0} \frac{\frac{d}{dx} (e^{7x} - 1 - x^2)}{\frac{d}{dx} (\ln(1 + 5x))} = \lim_{x \to 0} \frac{e^{7x} \cdot 7 - 2x}{\frac{5}{1 + 5x}} = \frac{7}{5}.$$

ЗАДАНИЕ 6

Функция f(x) задается различными аналитическими выражениями для различных областей изменения аргумента в пункте а). Требуется в пунктах а) и б) найти точки разрыва и определить характер разрыва и сделать чертёж.

a)
$$f(x) = \begin{cases} x + 4, & x \in (-\infty; -1) \\ x^2 + 2, & x \in (-1; 1) \\ 2x, & x \in (1; +\infty) \end{cases}$$
 6) $f(x) = 8^{\frac{5}{x+1}}$.

Теория к заданию 7. Непрерывность функции. Точки разрыва.

Функция y = f(x) называется непрерывной в точке x_0 , если: 1) функция f(x) определена в точке x_0 ; 2) существует конечный предел функции f(x) в точке x_0 ; 3) этот предел равен значению функции в точке x_0 , т.е.

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Точка x_0 , в которой нарушено хотя бы одно из трех условий непрерывности функции, называется точкой разрыва функции. Если в точке x_0 существуют конечные односторонние пределы $f(x_0+0)$ и $f(x_0-0)$ такие, что $f(x_0+0)\neq f(x_0-0)$, то x_0 называется точкой разрыва первого рода, а число $\delta=|f(x_0+0)-f(x_0-0)|$ называется скачком. Если хотя бы один из односторонних пределов $f(x_0+0)$ или $f(x_0-0)$ не существует или равен ∞ , то точка x_0 называется точкой разрыва второго рода. Если $f(x_0+0)=f(x_0-0)$ и функция y=f(x) не определена в точке x_0 или определена, но $f(x_0)\neq f(x_0+0)=f(x_0-0)$, то x_0 называется точкой устранимого разрыва.

Решение. а) Функции: y = x + 4, $y = x^2 + 2$, y = 2x — непрерывны на всей числовой оси, поэтому функция y = f(x) непрерывна при $x \in (-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$.

В точке x=-1 функция y=f(x) не определена и $\lim_{x\to -1+0}f(x)=\lim_{x\to -1+0}(x^2+2)=(-1)^2+2=3,$

$$\lim_{x \to -1-0} f(x) = \lim_{x \to -1+0} (x+4) = -1+4 = 3$$
, поэтому

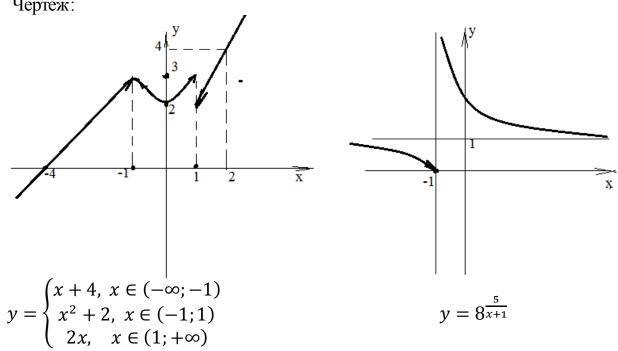
 $f(x_0 + 0) = f(x_0 - 0) = 3$, а значит x = -1 — точка устранимого разрыва.

В точке x=1 функция y=f(x) не определена и $\lim_{x\to 1+0}f(x)=\lim_{x\to 1+0}(2x)=2\cdot 1=2$, $\lim_{x\to 1-0}f(x)=\lim_{x\to 1-0}(x^2+2)=1^2+2=3$, поэтому

 $f(x_0 + 0) \neq f(x_0 - 0)$, а значит x = 1 — точка разрыва первого рода.

б) Функции $y = 8^t$ непрерывна на всей числовой оси, функция $t = \frac{5}{x+1}$ непрерывна при всех x, кроме x = -1, поэтому сложная функция $y = 8^{\frac{5}{x+1}}$ непрерывна при всех x, кроме x = -1.

 $\lim_{x \to -1+0} f(x) =$ точке x = -1 функция y = f(x) не определена; $\lim_{x \to -1+0} 8^{\frac{5}{x+1}} = +\infty, \quad \text{T.K.} \quad \lim_{x \to -1+0} \frac{5}{x+1} = +\infty, \quad \lim_{t \to +\infty} 8^t = +\infty; \quad \lim_{x \to -1-0} f(x) = \lim_{x \to -1-0} 8^{\frac{5}{x+1}} = 0, \quad \text{T.K.} \quad \lim_{x \to -1-0} \frac{5}{x+1} = -\infty, \quad \lim_{t \to -\infty} 8^t = 0.$ Таким образом, x = -1 — точка разрыва второго рода.



ЗАДАНИЕ 7

Найти производные $\frac{dy}{dx}$ функций a), б), в) и дифференциалы функций г) и д).

Теория к заданию 8. При решении примеров используются формулы производных сложных функций y = f(u), где u = u(x):

$$(\mathbf{u}^a)' = a\mathbf{u}^{a-1} \cdot \mathbf{u}'$$
; $(a^\mathbf{u})' = a^\mathbf{u} \ln a \cdot \mathbf{u}'$; $(\sin \mathbf{u})' = \cos \mathbf{u} \cdot \mathbf{u}'$; $(\ln \mathbf{u})' = \frac{\mathbf{u}'}{\mathbf{u}}$ и другие.

Решение.

a)
$$y=(\arcsin x)^2$$
; $y'=2\arcsin x \cdot (\arcsin x)'=\frac{2\arcsin x}{\sqrt{1-x^2}}$.

б)
$$y = \sqrt{\frac{1+x}{1-x}}$$
; Преобразуем: $\ln y = \frac{1}{2} \ln \frac{1+x}{1-x} = \frac{1}{2} \left(\ln(1+x) - \ln(1-x) \right)$.

$$\frac{y'}{y} = \frac{1}{2} \left(\frac{(1+x)'}{1+x} - \frac{(1-x)'}{1-x} \right) = \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) = \frac{1}{2} \cdot \frac{2}{1-x^2} = \frac{1}{1-x^2}.$$

$$y' = \sqrt{\frac{1+x}{1-x}} \cdot \frac{1}{1-x^2}.$$
B) $y = \arctan \frac{2x}{1-x^2};$ $y' = \frac{\left(\frac{2x}{1-x^2}\right)'}{1+\left(\frac{2x}{1-x^2}\right)^2} = \frac{2}{1+\frac{4x^2}{(1-x^2)^2}} \cdot \frac{x'(1-x^2)-x(1-x^2)'}{(1-x^2)^2} = \frac{1}{1+x^2}.$

$$= \frac{2}{(1-x^2)^2 + 4x^2} \cdot \frac{(1-x^2+2x^2)}{1} = \frac{2 \cdot (1+x^2)}{(1+x^2)^2} = \frac{2}{1+x^2}.$$

$$y = (x^{2} + 1)\arcsin(3 - x); \quad y' = (x^{2} + 1)'\arcsin(3 - x) + (x^{2} + 1)\left(\arcsin(3 - x)\right)' =$$

$$= 2x\arcsin(3 - x) + (x^{2} + 1)\frac{(3 - x)'}{\sqrt{1 - (3 - x)^{2}}} = 2x\arcsin(3 - x) - \frac{x^{2} + 1}{\sqrt{1 - (3 - x)^{2}}};$$

$$dy = \left(2x \cdot \arcsin(3 - x) - \frac{x^{2} + 1}{\sqrt{1 - (3 - x)^{2}}}\right)dx.$$

д) $y=(\sin x)^{\log x}$; логарифмируем: $\ln y=(\sin x)^{\log x}$ дифференцируем:

$$\frac{y'}{y} = (\ln \sin x)' t g x + (t g x)' \ln \sin x =$$

$$= \frac{(\sin x)'}{\sin x} \cdot t g x + \frac{1}{\cos^2 x} \cdot \ln \sin x = \frac{\cos x}{\sin x} t g x + \frac{\ln \sin x}{\cos^2 x};$$

$$y' = (\sin x)^{t g x} \left(1 + \frac{\ln \sin x}{\cos^2 x} \right).$$

$$dy = (\sin x)^{tgx} \left(1 + \frac{\ln \sin x}{\cos^2 x} \right) dx.$$

ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №3

Частные производные. Приложения производных. Построение графиков функций.

ЗАДАНИЕ 8.

Показать, что
$$x^2 \cdot \frac{\partial^2 z}{\partial x^2} = y^2 \cdot \frac{\partial^2 z}{\partial y^2}$$
, если $z = \sin(xy)$.

Решение. Находим частные производные:

$$\frac{\partial z}{\partial x} = y \cdot \cos(xy); \frac{\partial^2 z}{\partial x^2} = -y^2 \cdot \sin(xy); \frac{\partial z}{\partial y} = x \cdot \cos(xy); \frac{\partial^2 y}{\partial y^2} = -x^2 \cdot \sin(xy).$$

Подставляем вторые частные производные в уравнение, заданное в условии:

$$x^2 \cdot (-y^2 \sin xy) = y^2 \cdot (-x^2 \sin xy).$$

Левая часть совпадает с правой, что и требовалось доказать.

ЗАДАНИЕ 9.

Найти а) \overline{grad} z в точке A(3;1) и б) производную в точке A по направлению вектора $\overline{a} = 12\overline{i} - 5\overline{j}$, если $z = \ln(x^2 + y^2)$.

Решение. Найдем частные производные
$$\frac{\partial z}{\partial x} = \frac{2x}{x^2 + y^2}; \qquad \frac{\partial z}{\partial y} = \frac{2y}{x^2 + y^2}$$

и вычислим их значение в точке А:

$$\left(\frac{\partial z}{\partial x}\right)_A = \frac{3}{5}; \left(\frac{\partial z}{\partial y}\right)_A = \frac{1}{5}.$$

a)
$$\overline{grad} z = \frac{2x}{x^2 + y^2} \cdot \overline{i} + \frac{2y}{x^2 + y^2} \cdot \overline{j};$$

B точке A получим:

$$\left(\overline{grad}\ z\right)_A = \frac{3}{5} \cdot \overline{i} + \frac{1}{5} \cdot \overline{j}$$
.

 $\overline{6}$) направляющие косинусы вектора $\overline{a} = X\overline{i} + Y\overline{j}$ находим по формулам: $\cos \alpha = \frac{X}{|\alpha|}; \cos \beta = \frac{Y}{|\alpha|}$

$$|\overline{a}| = \sqrt{X^2 + Y^2} = \sqrt{12^2 + (-5)^2} = 13.$$

$$\cos \alpha = \frac{12}{13}$$
; $\cos \beta = -\frac{5}{13}$.

Используем формулу:

$$\frac{\partial z}{\partial a} = \frac{\partial z}{\partial x} \cdot \cos \alpha + \frac{\partial z}{\partial y} \cdot \cos \beta.$$

Производная функции $z = \ln(x^2 + y^2)$ в точке A(3; 1) по направлению вектора \overline{a} равна:

$$\left(\frac{\partial z}{\partial a}\right)_{A} = \frac{3}{5} \cdot \frac{12}{13} + \frac{1}{5} \cdot \left(-\frac{5}{13}\right) = \frac{31}{65}.$$

Other:
$$\left(\overline{grad}\ z\right)_A = \frac{3}{5}\overline{i} + \frac{1}{5}\overline{j}; \quad \left(\frac{\partial z}{\partial a}\right)_A = \frac{31}{65}.$$

Провести полное исследование функций и построить графики.

a)
$$y = \frac{x^2}{1+x}$$
; 6) $y = \ln \frac{x-1}{x+2} + 1$.

Решение:

a)
$$y = \frac{x^2}{1+x}$$
.

- 1) Функция определена на всей оси Ох, кроме точки x=-1, где она терпит бесконечный разрыв. Область определения $D(f)=(-\infty;-1)\cup(-1;+\infty)$.
- 2) Исследуем поведение функции вблизи граничных точек области определения $(x \to \pm \infty, \ x \to -1)$. Находим наклонные асимптоты y = kx + b:

$$k = \lim_{x \to \pm \infty} \frac{y}{x} = \lim_{x \to \pm \infty} \frac{x}{1+x} = 1;$$

$$b = \lim_{x \to \pm \infty} (y - kx) = \lim_{x \to \pm \infty} \left(\frac{x^2}{1 + x} - x \right) = \lim_{x \to \pm \infty} \left(-\frac{x}{1 + x} \right) = -1$$

Наклонная асимптота y = x - 1. Вертикальная асимптота x = -1, т.к.

$$\lim_{x \to -1 \pm 0} \frac{x^2}{x+1} = \pm \infty.$$

3) Промежутки, на которых f(x) > 0 и f(x) < 0, представлены на рисунке:

4) Находим критические точки, в которых первая или вторая производная равна нулю, либо не существует:

$$y' = \frac{2x(1+x)-x^2}{(1+x)^2} = \frac{x(2+x)}{(1+x)^2};$$

$$y'' = \frac{(2+2x)(1+x)^2 - (2x+x^2) \cdot 2(1+x)}{(1+x)^4} = 2\frac{x^2 + 2x + 1 - 2x - x^2}{(1+x)^3} = \frac{2}{(1+x)^3}.$$

Критическими точками будут x=0 и x=-2, где y'=0. В точке x=-1 функция не существует.

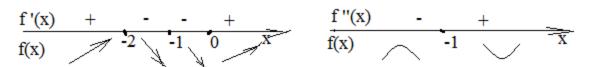
Из формулы для y следует, что y < 0 при x < -1, и y > 0 при x > -1.

Из формулы для y' следует, что при х из $(-\infty,-2)$ y'>0, т.е. функция возрастает; в интервале (-2,-1) y'<0 — функция убывает, а точка x=-2 является точкой максимума. В интервале $(0,+\infty)$ y'>0 — функция возрастает. В интервале (-1;0) производная y'<0 и функция убывает. Точка x=0 — точка минимума.

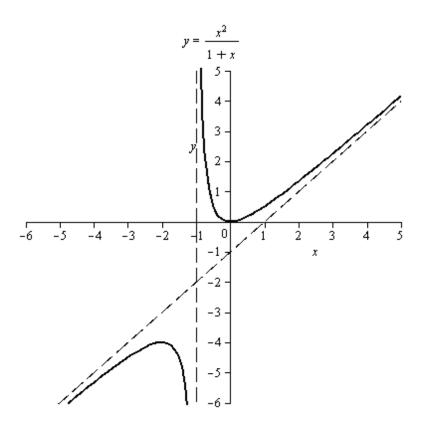
В интервале $(-\infty;-1)$ y''<0 — график функции выпуклый, в интервале $(-1;+\infty)$ y''>0 - график вогнутый.

Результаты исследований сведем в таблицу:

Получаем:



Строим график:



$$5) \quad y = \ln \frac{x - 1}{x + 2} + 1.$$

- 1) Функция определена, если $\frac{x-1}{x+2} > 0$, т.е. $x \in (-\infty; -2) \cup (1; +\infty)$, $D(f) = (-\infty; -2) \cup (1; +\infty)$.
- 2) В точках x = -2 и x = 1 функция имеет бесконечный разрыв (разрыв второго рода), так как:

$$\lim_{x \to -2-0} (\ln \frac{x-1}{x+2} + 1) = \infty \; ; \quad \lim_{x \to 1+0} (\ln \frac{x-1}{x+2} + 1) = -\infty.$$

Поэтому прямые x = -2 и x = 1 – вертикальные асимптоты. Наклонные асимптоты:

$$k_1 = \lim_{x \to \pm \infty} \frac{y}{x} = \lim_{x \to \pm \infty} \frac{\ln \frac{x-1}{x+2} + 1}{x} = 0; \quad b = \lim_{x \to \pm \infty} (y - kx) = \lim_{x \to \pm \infty} (\ln \frac{x-1}{x+2} + 1) = 1;$$

Таким образом, уравнение асимптоты y = 1.

3) Находим промежутки, на которых f(x) > 0 и f(x) < 0. Из условия y=0 найдем точку пересечения кривой с осью Ох.

$$\ln \frac{x-1}{x+2} + 1 = 0 \implies \ln \frac{x-1}{x+2} = -1 \implies \ln \frac{x-1}{x+2} = \ln e^{-1} \implies \frac{x-1}{x+2} = \frac{1}{e} \implies$$

$$\Rightarrow e \cdot x - e = x + 2 \Rightarrow x = \frac{2 + e}{e - 1};$$

$$y > 0 \Leftrightarrow \frac{x - 1}{x + 2} > \frac{1}{e} \Leftrightarrow \frac{x - 1}{x + 2} - \frac{1}{e} > 0 \Leftrightarrow \frac{(e - 1)x - (e + 2)}{e(x + 2)} > 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{x - \frac{e + 2}{e - 1}}{x + 2} > 0 \Leftrightarrow x \in (-\infty; -2) \cup \left(\frac{e + 2}{e - 1}; +\infty\right).$$

Промежутки, на которых f(x) > 0 и f(x) < 0, представлены на рисунке $(x_0 = \frac{e+2}{e-1})$:

$$\frac{f(x)}{2} - - - \frac{1}{x_0}$$

3) Находим
$$y'$$
 и y'' : $y' = \frac{x+2}{x-1} \cdot \left(\frac{x-1}{x+2}\right)' = \frac{x+2}{x-1} \cdot \frac{(x+2-x+1)}{(x+2)^2} = \frac{3}{(x-1)(x+2)}$;

$$y'' = -3\frac{x+2+x-1}{(x-1)^2(x+2)^2} = -3\frac{2x+1}{(x-1)^2(x+2)^2}.$$

Критические точки: $y' \neq 0$ (в точках x = -2 и x = 1 функция не существует;

$$y''$$
 = 0 , точка $x = \frac{1}{2}$ — критическая точка; $x = \frac{1}{2}$ ∉ ОДЗ.

y'>0 в интервалах (-∞;-2) и (1;+∞) – функция возрастает;

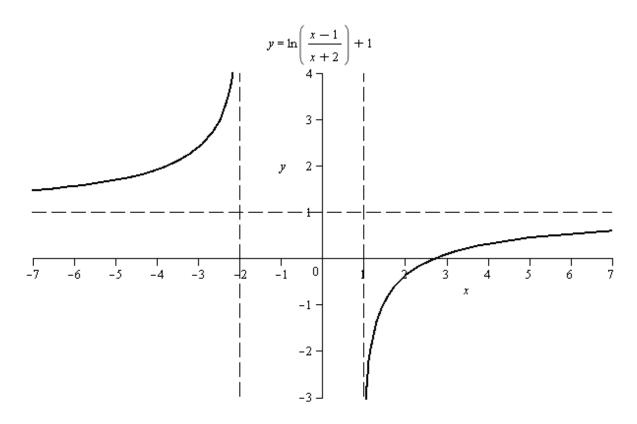
y'' < 0 в интервале $(1; +\infty)$ – график функции выпуклый;

y'' > 0 в интервале $(-\infty; -2)$ — график функции вогнутый.

Составим таблицу, включающую точки x = -2 и x = 1; $x = \frac{1+e}{e-1}$.

$$x$$
 (- ∞ ,-2) -2 1 (1, $\frac{1+e}{e-1}$). $\frac{1+e}{e-1}$. $(\frac{1+e}{e-1},+\infty)$ y + + ∞ - ∞ - 0 + y' + не сущ. не сущ. + + + + + y'' + не сущ. не сущ. - - - - - Выводы: Функция Вертикальная Вертикальная Функция возрастает; график вогнут. Выпукл. выпукл.

Строим график функции:



ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №4 Неопределённый и определённый интегралы. Приложения неопределенных интегралов.

ЗАДАНИЕ 11.

Найти неопределённые интегралы. В пунктах а) и б) результаты проверить дифференцированием.

a)
$$\int \frac{\sin 2x - 3}{\cos^2 x} dx;$$

$$\int \int \frac{3x - 11}{x^2 + 2x - 3} dx;$$

$$\int \int tg^4 x \cdot dx.$$

Решение.

a)
$$\int \frac{\sin 2x - 3}{\cos^2 x} dx = \int \left(\frac{\sin 2x}{\cos^2 x} - \frac{3}{\cos^2 x}\right) dx = \int \frac{2\sin x \cdot \cos x}{\cos^2 x} dx - 3\int \frac{1}{\cos^2 x} dx =$$

$$= 2\int \frac{\sin x}{\cos x} dx - 3\int \frac{1}{\cos^2 x} dx = 2\int -\frac{d(\cos x)}{\cos x} - 3\int \frac{1}{\cos^2 x} dx =$$

$$= -2\ln|\cos x| - 3\operatorname{tg} x + C.$$

Проверка.

Найдём производную от полученного результата:

$$(-2\ln|\cos x| - 3\operatorname{tg} x + C)' = -2\frac{(-\sin x)}{\cos x} - 3\frac{1}{\cos^2 x} =$$

$$=\frac{2\sin x \cos x - 3}{\cos^2 x} = \frac{\sin 2x - 3}{\cos^2 x}.$$

Получили исходную подынтегральную функцию. Значит, интеграл найден верно.

OTBET: $-2\ln|\cos x| - 3\operatorname{tg} x + C$.

б) $\int x \cdot 3^x \cdot dx$ находят интегрированием по частям. Формула интегрирования по частям имеет вид

$$\int u \, dv = uv - \int v \, du \, .$$

Примем x = u, $3^x dx = dv$. Первое равенство дифференцируем, второе интегрируем:

$$dx = du, \ \int 3^x dx = \int dv.$$

Получаем: du = dx, $v = \frac{3^x}{\ln 3}$. Применяя формулу интегрирования по частям, находим:

$$\int x \cdot 3^{x} \cdot dx = x \cdot \frac{3^{x}}{\ln 3} - \int \frac{3^{x}}{\ln 3} dx = x \cdot \frac{3^{x}}{\ln 3} - \frac{3^{x}}{\ln^{2} 3} + C.$$

Проверка.

$$\left(x \cdot \frac{3^x}{\ln 3} - \frac{3^x}{\ln^2 3} + C\right)' = \frac{3^x}{\ln 3} + x \cdot 3^x - \frac{3^x}{\ln 3} = x \cdot 3^x.$$

Интеграл вычислен верно.

Other:
$$x \cdot \frac{3^x}{\ln 3} - \frac{3^x}{\ln^2 3} + C$$
.

в) $\int \frac{3x-11}{x^2+2x-3} dx$ – интеграл от рациональной дроби. Найдём корни многочлена, стоящего в знаменателе, т. е. решим уравнение $x^2+2x-3=0$:

$$x_1 = -3, x_2 = 1$$

и разложим знаменатель дроби на множители, а дробь – на сумму двух простейших дробей:

$$\frac{3x-11}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1} = \frac{A(x-1) + B(x+3)}{(x+3)(x-1)}.$$

Приравняем числители первой и последней дроби:

$$3x-11=A(x-1)+B(x+3)$$
.

Это тождество должно выполняться при всех χ .

Подставим x=1: $3-11=A\cdot 0+B\cdot 4 \Rightarrow B=-2$.

Теперь подставим x = -3: $-9 - 11 = -4 \cdot A + B \cdot 0 \Rightarrow A = 5$.

Значит, разложение дроби имеет вид:

$$\frac{3x-11}{x^2+2x-3} = \frac{5}{x+3} - \frac{2}{x-1}.$$

Найдём теперь заданный интеграл:

$$\int \frac{3x-11}{x^2+2x-3} dx = \int \frac{5}{x+3} dx - \int \frac{2}{x-1} dx = 5 \int \frac{d(x+3)}{x+3} - 2 \int \frac{d(x-1)}{x-1} = 5 \ln|x+3| - 2 \ln|x-1| + C.$$

OTBET: $5\ln|x+3|-2\ln|x-1|+C$.

г) В интеграле $\int tg^4x \cdot dx$ сделаем замену переменной $tg \ x = t$, откуда $x = arctg \ t$ Дифференцируя обе части, найдём:

$$dx = \frac{dt}{t^2 + 1}.$$

После замены интеграл принимает вид:

$$\int tg^{4}x \cdot dx = \int \frac{t^{4} \cdot dt}{t^{2} + 1} = \int \frac{(t^{4} - 1) + 1}{t^{2} + 1} dt = \int \left(\frac{(t^{2} - 1)(t^{2} + 1)}{t^{2} + 1} + \frac{1}{t^{2} + 1}\right) dt =$$

$$= \int (t^{2} - 1) dt + \int \frac{1}{t^{2} + 1} dt = \frac{t^{3}}{3} - t + \arctan t + C =$$

$$= \frac{tg^{3}x}{3} - tg x + \arctan t (tg x) + C = \frac{tg^{3}x}{3} - tg x + x + C.$$

OTBET: $\frac{\operatorname{tg}^3 x}{3} - \operatorname{tg} x + x + C$.

ЗАДАНИЕ 12.

Вычислить несобственный интеграл или доказать его расходимость:

$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}.$$

Решение. Функция $\frac{1}{\sqrt{9-x^2}}$ не ограничена в окрестности точки x=3. Поэтому точка x=3- особая. По определению несобственного интеграла

$$\int_{0}^{3} \frac{dx}{\sqrt{9 - x^{2}}} = \lim_{\varepsilon \to 0} \int_{0}^{3 - \varepsilon} \frac{dx}{\sqrt{9 - x^{2}}} = \lim_{\varepsilon \to 0} \arcsin \frac{x}{3} \Big|_{0}^{3 - \varepsilon} = \lim_{\varepsilon \to 0} \arcsin \frac{3 - \varepsilon}{3} = \arcsin 1 = \frac{\pi}{2}.$$
Other:
$$\int_{0}^{3} \frac{dx}{\sqrt{9 - x^{2}}} = \frac{\pi}{2}.$$

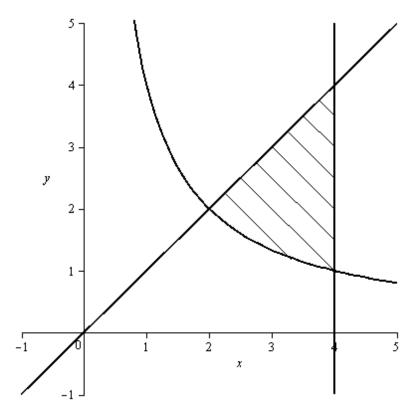
ЗАДАНИЕ 13.

Вычислить площадь фигуры, ограниченной линиями

$$y = \frac{4}{x}$$
, $y = x$, $x = 4$.

Решение.

Искомая площадь заштрихована на рисунке.



Её величина вычисляется по формуле

$$S = \int_{2}^{4} \left(x - \frac{4}{x} \right) dx = \left(\frac{x^{2}}{2} - 4 \ln|x| \right) \Big|_{2}^{4} =$$

 $=8-4\ln 4-2+4\ln 2=6-8\ln 2+4\ln 2=6-4\ln 2$.

Ответ: $6-4\ln 2$.

Рекомендуемая литература:

- 1. Письменный Д. Т. Конспект лекций по высшей математике. Полный курс. Издательство Айрис-пресс, 2013.
- 2. Шипачёв В. С. Высшая математика. Учебное пособие для бакалавров. Издательство Юрайт, 2013.
- 3. Шипачёв В. С. Начала высшей математики. Издательство Лань, 2013.
- 4. Шипачёв В. С. Руководство к решению задач по теории вероятностей и математической статистике. Учебное пособие для бакалавров. Издательство Юрайт, 2013.

СОДЕРЖАНИЕ

Введение	3
Учебный план дисциплины	4
Указания по выполнению контрольных работ	4
ЗАДАНИЯ КОНТРОЛЬНЫХ РАБОТ	7
Контрольная работа № 1	7
Контрольная работа № 2	10
Контрольная работа № 3	17
Контрольная работа № 4	20
ОБРАЗЦЫ ВЫПОЛНЕНИЯ КОНТРОЛЬНЫХ РАБОТ	23
Контрольная работа № 1	23
Контрольная работа № 2	31
Контрольная работа № 3	37
Контрольная работа № 4	42
Рекомендуемая литература	46

ДЛЯЗАМЕТОК